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Abstract

In this paper feasibility-preserving genetic operators for hybrid algorithms using TSP solvers for the Inventory Routing Problem
(IRP) are studied. The IRP is a problem of jointly optimizing delivery schedules and routes for vehicles transporting products
from a supplier to a number of retailers. This optimization problem is highly constrained, because limits on inventory levels as
well as the vehicle capacity have to be taken into account. Moreover, the IRP is a generalization of the TSP and solving the TSP
effectively is an important part of obtaining good solutions to the IRP. In this paper evolutionary algorithms are used for solving the
IRP, but finding good routes is delegated to a state-of-the-art TSP solver. Therefore, genetic operators used in this paper focus on
constructing the delivery schedule and not on optimizing the routes. In the experimental part of the paper an evolutionary algorithm
using feasibility-preserving genetic operators is compared to the Infeasibility Driven Evolutionary Algorithm (IDEA) that uses the
selective pressure to obtain feasible solutions. Presented results suggest that designing good feasibility-preserving genetic operators
is important, because allowing the optimization algorithm to generate infeasible solutions and handling infeasibility in IDEA using
the selective pressure leads to inferior results.
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1. Introduction

The Inventory Routing Problem (IRP) introduced in [9] is an optimization problem involving joint optimization of
delivery schedules and vehicle routes. In the most commonly investigated version of the IRP a single commodity is
distributed from a supplier to n retailers using a homogeneous fleet of vehicles of capacity C, and deliveries have to be
planned over a finite horizon H. On each day t = 1, . . . ,H the supplier produces r0,t units of the product and retailer
s ∈ 1, . . . , n sells rs,t units. In some problem formulations it is assumed that the production and sales are constant
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in time and thus denoted r0 and rs respectively. Inventory levels at time t are denoted Is,t, where s = 0, . . . , n with
the minimum and maximum allowed values constant in time, but possibly different for each of the retailers and the
supplier, and denoted Ls and Us, respectively (with an often assumed infinite storage capacity at the supplier, that is
U0 = ∞). Thus, inventory level constraints are: ∀s = 0, . . . , n∀t = 1, . . . ,H : Ls ≤ Is,t ≤ Us.

A solution to the IRP can be described as a set of routes πt : t = 1, . . . ,H assigned to each vehicle on consecutive
days with the number of units of the product to be delivered xs,t specified for each retailer s for each date t. This
solution representation can further be simplified if a replenishment policy is adopted, which allows determining the
number of product units to deliver to each retailer. For example, in the up-to-level replenishment policy if a retailer is
visited its inventory is filled to the maximum, so the amount of goods shipped to retailer s at time t is xs,t = Us − Is,t

if s ∈ πt or 0 if s � πt, where, as stated above, Is,t is the current inventory level at retailer s at time t. The up-to-level
replenishment policy was to date used in numerous works on the IRP, among others in the paper [3] in which a well
known set of benchmark IRP instances was defined. Regardless of how the delivered quantities are determined the
capacity of the vehicle cannot be exceeded, so ∀t = 1, . . . ,H :

∑n
s=1 xs,t ≤ C.

Inventory costs are denoted hs for s = 0, . . . , n and are assumed to be constant in time, but can be different at
different locations. Transportation costs, in the most general case, are given for each pair of locations i, j ∈ 0, . . . n and
are denoted ci, j. In some problem formulations, however, they are calculated as Euclidean distances from locations
given as coordinates on the real plane R2. For a given route πt = [πt,1, . . . , πt,k] the transportation cost is c(πt) =
c0,πt,1 +

∑k−1
i=1 cπt,i,πt,i+1 + cπt,k ,0. Inventory costs and transportation costs are added together and thereby an evaluation of

the given solution to the IRP is obtained.
The IRP problem variants studied in the literature include single- [3] and multi-depot [5] IRP, time windows

[8, 12] and transshipments [11]. Methods used to solve the IRP include genetic algorithms (GA) [4], particle swarm
optimization (PSO) [7, 16], simulated annealing (SA) [19], tabu search (TS) [1], variable neighbourhood search (VNS)
[10, 14, 15], Greedy Randomized Adaptive Search Procedure (GRASP) [2], heuristic methods [12] and mathematical
programming [6].

From the IRP definition presented at the beginning of this section it follows that a part of solving this optimization
problem consists in tackling the Travelling Salesman Problem (TSP). For the TSP well-known problem solvers exist,
such as the Concorde TSP Solver [20]. Solvers dedicated to the TSP are known to handle even very large instances
efficiently. For example the Concorde TSP Solver found the optimal solutions to all 110 of the TSPLIB instances
[18], the largest having 85900 locations. It seems, therefore, promising to study metaheuristic algorithms that focus
on finding good delivery schedules and delegate solving the TSP to the dedicated solvers. From the point of view
of the design of such metaheuristics, and especially the genetic operators this means treating the routes πt as sets
of locations with the ordering determined by the TSP solver. In this paper several genetic operators are studied that,
instead of optimizing the routes, focus on finding good delivery schedules. The operators used with SGA preserve
feasibility of solutions to the IRP.

The rest of this paper is structured as follows. In Section 2 genetic operators used for solving the IRP are described.
Section 3 presents the evolutionary algorithms used in this paper. In Section 4 experiments and their results are
discussed. Section 5 concludes the paper.

2. Solution Representation and Genetic Operators

This section presents the solution representation used in this paper, the genetic operators and the population initial-
ization procedure. Because finding good routes is delegated to the TSP solver, the genetic operators used in this paper
do not attempt to construct good routes, focusing instead on the assignment of retailers to particular dates. In this pa-
per two types of genetic operators are used: preserving solution feasibility (denoted as “feasible” later in the text) and
allowing infeasible solutions (denoted “infeasible”). Generally, for each infeasible operator a feasible counterpart is
defined with the exception of two infeasible mutation operators one adding and the other removing retailers for which
one feasible equivalent was defined which adds or removes a retailer depending on which of the moves preserves the
feasibility of the solution. Presented operators use the following functions:

URand(A) - draws an element from the given set with uniform probability. For example, URand([0, 1]) draws a real
number uniformly from the [0, 1] range and URand({1, 2, 3}) draws one of the three numbers with uniform probability.

RandPerm(A) - returns the elements of a given set A in a random order.
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S tockoutDate(S , s, t0) - finds the first date on which a stockout occurs if no deliveries are made to the retailer s
from the day t0 onwards (inclusive).

2.1. Solution Representation and Evaluation

Solving the IRP requires determining which retailers to visit at each date t = 1, . . . ,H and what quantities of the
product xs,t to deliver for s = 1, . . . , n. In this paper the up-to-level replenishment policy is used, so it suffices to store
the vehicle route πt for each date t = 1, . . . ,H and the quantities xs,t are determined using this policy. Consequently,
in the evolutionary algorithms studied in this paper solutions to the IRP are represented as the so-called jagged arrays
which are a generalization of rectangular arrays allowing the “rows” to be of different length. Each solution S = {πt :
t = 1, . . . ,H} consists of H vectors, each representing the route for the day t = 1, . . . ,H. Before evaluation, the routes
in S are optimized using the Concorde TSP Solver [20]. Then, the evaluation procedure calculates:

• Daily inventory levels for all retailers Is,t, where s = 1, . . . , n, t = 1, . . . ,H.
• Daily vehicle loads Vt, where t = 1, . . . ,H.
• Total inventory costs fi(S ) =

∑n
s=0
∑H+1

t=1 hsIs,t

• Total transportation costs ft(S ) =
∑H

t=1 c(πt), where c(πt) is calculated as described in Section 1.
• Total costs f (S ) = fi(S ) + ft(S ).
• Constraints gi(S ), i = 1, 2, 3 with g1(S ) = −∑H

t=1 max(Vt − I0,t, 0) and g1(S ) < 0 representing a stockout at
the supplier, g2(S ) = −∑H

t=1 max(Vt − C, 0) and g2(S ) < 0 representing the vehicle capacity being exceeded,
g3(S ) = −∑H

t=1
∑n

s=1 max(Ls − Is,t, 0) and g3(S ) < 0 representing the minimum inventory level constraint at the
retailers being violated.

For a feasible solution S the predicate IsFeasible returns true: IsFeasible(S ) ≡ g1(S ) ≥ 0∧ g2(S ) ≥ 0∧ g3(S ) ≥ 0.

2.2. Supply at the Latest Date heuristic

The Supply at the Latest Date (SLD) heuristic determines the days at which the delivery has to be made to a given
retailer s in order to avoid stockout. It works under the assumption that in order to lower the inventory costs it is
profitable to deliver the goods as late as possible, so that they do not occupy storage space for long. The working of
the SLD heuristic is presented in Algorithm 1. In the presented version the heuristic checks if the vehicle capacity C
is not exceeded in order to preserve feasibility of generated solutions.

2.3. Crossover Operator

The crossover operator used in this paper builds two offspring solutions O(1) and O(2) by uniformly mixing delivery
schedules for individual retailers obtained from two parent solutions S (1) and S (2). For each retailer s in turn (in
a random order) the dates when the deliveries are made to retailer s are obtained from S (1) and S (2) and they are
used to add retailer s to the delivery schedules in O(1) and O(2). The working of the crossover operator is presented in
Algorithm 2. The noIn f easible parameter allows permitting or disallowing infeasible offspring to be generated by the
crossover operator.

The crossover operator presented here also uses the parameter Pcross, which is the probability that the crossover
procedure described in Algorithm 2 is used to generate the offspring for a given pair of parents. With probability
1 − Pcross the offspring are clones of the parents.

2.4. Mutation Operators

Mutation operators perform one of three operations: moving retailers from one day to another, adding a retailer
or removing one. Mutation is applied to each solution with the probability Pmut and it makes at most Nmut = αmut · n
changes to the solution. The αmut parameter can be interpreted as mutation intensity, determining how profoundly the
mutation operator changes the solution it is applied to. There are five variants of the mutation operator, which are
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Algorithm 1: The Supply at the Latest Date (SLD) heuristic.

Inputs:
S = {πt : t = 1, . . . ,H} - A solution to the IRP
Vt, t = 1, . . . ,H - Vehicle loads for the solution S
s - A retailer for which to plan deliveries
d - The day from which to start planning

Output:
S ′ = {π′t : t = 1, . . . ,H} - A solution with the deliveries for retailer s planned

Precondition:
∀t = d, . . . ,H : s � πt - The retailer s is not included in the routes from the day d onwards.

tprev := d - 1
t := d
while t ≤ H do

q := 0
if Is,t − rs,t < Ls then // Stockout at day t

for tins ∈ {t, . . . , tprev + 1} do // Try to deliver on dates decreasing from t to tprev + 1
q := Us − Is,tins // Delivered quantity determined using the up-to-level policy
if Vtins + q ≤ C then // The vehicle is not overloaded
πtins := πtins ∪ {s}
Vtins := Vtins + q
tprev := tins

break

Is,t := Is,t − rs,t + q
t := t + 1

described in this section: feasible date change, infeasible date change, feasible retailer addition/removal, infeasible
retailer addition, infeasible retailer removal.

Feasible date change mutation (FDCM) The feasible date change mutation operator considers retailers in a ran-
dom order selecting, for each retailer, one date when it is visited, moving this retailer to some other feasible date and
planning subsequent deliveries using the SLD heuristic. Details of this operator are presented in Algorithm 3.

Infeasible date change mutation The infeasible date change mutation operator performs Nmut changes to the
solution S = {πt : t = 1, . . . ,H} by:

1. Randomly selecting a removal date t−, such that πt− � ∅.
2. Randomly selecting a retailer s ∈ πt− .
3. Randomly selecting an addition date t+, such that s � πt+ .
4. Removing the retailer s from the route on the day t−.
5. Adding the retailer s to the route on the day t+.

All random selections are performed with uniform probability. If the original solution S contains only empty routes,
a random retailer is added to one of them. If ∀t : s ∈ πt then it is not possible to find the t+ to add the retailer at, so
only the removal on the date t− is performed.

Feasible retailer addition/removal mutation The feasible retailer addition/removal mutation attempts to perform
Nmut changes to the solution S by creating, for each retailer s, candidate solutions with retailer s added or removed.
From the generated candidate solutions one feasible solution is selected at random. The working of this mutation
operator is presented in Algorithm 4.

Infeasible retailer addition mutation The infeasible retailer addition mutation applies Nmut changes to a solution
S = {πt : t = 1, . . . ,H}. Each change is made by randomly selecting a date d ∈ {1, . . . ,H} and a retailer s � πd. The
retailer s is added to the route on the date d.
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Algorithm 2: The crossover operator.

Inputs:
S (S 1) = {π(S 1)

t : t = 1, . . . ,H} - Parent 1
S (S 2) = {π(S 2)

t : t = 1, . . . ,H} - Parent 2
noIn f easible - Indicates whether to disallow building infeasible offspring

Output:
O(1) and O(2) - Offspring solutions

O(1) = {π(O1)
t := ∅ : t = 1, . . . ,H} // All routes in the offspring are empty at first

O(2) = {π(O2)
t := ∅ : t = 1, . . . ,H}

for s ∈ RandPerm({1, . . . , n}) do // Consider retailers in a random order
T1 := {t : s ∈ π(S 1)

t } // Get delivery schedules from parent solutions
T2 := {t : s ∈ π(S 2)

t }
if URand([0, 1]) < 0.5 then // Swap with probability 1

2
T1 ↔ T2

for t = 1, . . . ,H do // Try adding delivery schedules
if t ∈ T1 then // from parent solutions to the offspring
π(O1)

t := π(O1)
t ∪ {s}

if t ∈ T2 then
π(O2)

t := π(O2)
t ∪ {s}

if noInfeasible then
if ¬IsFeasible(O(1)) then // If infeasible offspring not allowed

O(1) := S LD(S (S 1), s, 1) // replace using the SLD heuristic

if ¬IsFeasible(O(2)) then
O(2) := S LD(S (S 2), s, 1)

Infeasible retailer removal mutation The infeasible retailer removal mutation applies Nmut changes to a solution
S = {πt : t = 1, . . . ,H}. Each change is made by randomly selecting one element from S which represents a retailer
s being visited on a day d. The retailer s is removed from πd. Note, that retailers for removal are selected with the
uniform probability over the entire solution S so if a retailer is present in several routes the probability of selecting
this retailer for removal increases.

2.5. Population Initialization

Population initialization is performed by first generating a base solution using the SLD heuristic and then mutating
this base solution using the feasible date change mutation (FDCM) operator with Pmut = 1.0 and αmut = 1.0. The
population initialization procedure is presented in Algorithm 5.

3. Evolutionary Algorithms

The evolutionary algorithms used in this paper are the classical Simple Genetic Algorithm (SGA) with:
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Algorithm 3: The feasible date change mutation (FDCM).

Inputs:
S = {πt : t = 1, . . . ,H} - Solution to mutate
Nmut - Number of changes to make to S

Output:
S ′ - Mutated solution if feasible modifications found or unchanged otherwise

S ′ := S
for s ∈ RandPerm({1, . . . , n}) do // Consider retailers in a random order

T := {t : s ∈ πt} // Get delivery days for retailer s
if T = ∅ then

continue

d := URand({1, . . . , |T |}) // Select a date to move and the range of movement
if d > 1 then

t0 := T [d − 1] + 1
else

t0 := 1

tmax := min(H, S tockoutDate(S , s, t0))

if tmax = t0 then // The date cannot be moved, or a stockout occurs
continue

for t+ ∈ RandPerm({t0, . . . , tmax} \ {T [d]}) do // Try moving the delivery
S ′′ := S ′ // to available dates in a random order
π′′T [d] := π′′T [d] \ {s}
π′′t+ := π′′t+ ∪ {s}
∀t > t+ : π′′t := π′′t \ {s}
S ′′ := S LD(S ′′, s, t+ + 1)
if IsFeasible(S ′′) then

S ′ := S ′′

Nmut := Nmut − 1
break

if Nmut = 0 then // Stop when Nmut changes were made
break

return S ′

• Fitness calculated based on the solution costs normalized to [0, 1]. That is f itness(S ) = 1 − Norm( f (S ), 0, 1),
where the Norm function normalizes the solution costs in the current population to [0, 1]. SGA tries to maximize
f itness(S ) thereby minimizing the cost f (S ).

• Elitism mechanism, preserving the best solution found so far.
• Mating pool selection based on a binary tournament with respect to the fitness.
• The crossover operator described in Section 2.3 with the noIn f easible parameter set to true allowing only

feasible solutions to be generated.
• Feasible date change and retailer addition/removal mutation operators described in Section 2.4.

and the Infeasibility Driven Evolutionary Algorithm (IDEA) [17] with:
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Algorithm 4: The feasible retailer addition/removal mutation.

Inputs:
S = {πt : t = 1, . . . ,H} - Solution to mutate
Nmut - Number of changes to make to S

Output:
S - Solution S mutated if feasible modifications found or unchanged otherwise

for s ∈ RandPerm({1, . . . , n}) do // Consider retailers in a random order
M := ∅
for d ∈ {1, . . . ,H} do

S ′ := S
if s ∈ πd then
π′d := π′d \ {s}

else
π′d := π′d ∪ {s}

if IsFeasible(S ′) then
M :=M∪ {S ′}

if M � ∅ then
S := URand(M)
Nmut := Nmut − 1

if Nmut = 0 then // Stop when Nmut changes were made
break

return S

Algorithm 5: The population initialization procedure.

Inputs:
Npop - Number of solutions to generate
Pmut - Mutation probability (Pmut = 1.0 by default)
αmut - Mutation intensity (αmut = 1.0 by default)

Output:
P - A population with Npop solutions

S 0 := ∅ // Generate the base solution
for s ∈ RandPerm({1, . . . , n}) do

S 0 := S LD(S 0, s, 1)

P := ∅
for i ∈ {1, . . . ,Npop} do // Population contains Npop copies of the base solution S 0
P := P ∪ {FDCM(S 0, Pmut, αmut)} // mutated using the feasible date change mutation (FDCM) operator

return P

• Mating pool selection based on a binary tournament with respect to the non-dominated front number and crowd-
ing distance.
• The crossover operator described in Section 2.3 with the noIn f easible parameter set to f alse allowing infeasible

solutions to be generated.
• Infeasible date change, retailer addition and retailer removal mutation operators described in Section 2.4.
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Note, that IDEA is a multi-objective optimization algorithm, but in this paper it is used to solve a single-objective
optimization problem. The second objective used in IDEA is the constraint violation measure calculated from the
constraints gi(S ), i = 1, 2, 3 (Section 2.1). IDEA was used in this paper as a baseline with which to compare SGA with
operators preserving feasibility, because IDEA aims at handling infeasibility, but allowing the operators to produce
infeasible solutions and using the selective pressure to obtain feasible ones. Both algorithms are hybridized with the
Concorde TSP Solver [20] to which the optimization of the delivery routes is delegated. Because the algorithms use
more than one mutation operator a mechanism for autoadaptation of operator probability based on success rates [13]
is used for deciding which operator to apply when solutions are mutated. Both algorithms start from populations gen-
erated using the population initialization procedure described in Section 2.5. This allows SGA to keep the population
feasible using feasible genetic operators and provides IDEA with a feasible part of the population. Infeasible solutions
in IDEA are obtained in subsequent generations by applying infeasible genetic operators.

The algorithms are parameterized by setting the population size Npop, operator probabilities Pcross and Pmut, and
mutation intensity αmut. These parameters were tuned using the grid-search approach with the tested values: Npop ∈ {
50, 100, 200, 500 }, Pcross ∈ { 0.2, 0.4, 0.6, 0.8, 1.0 }, Pmut ∈ { 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.50, 0.75, 1.00 }
and αmut ∈ { 0.1, 0.2, 0.5, 1.0 }. The selected values of the parameters were Npop = 50, Pcross = 0.2 for SGA and
Npop = 500, Pcross = 0.4 for IDEA. For both algorithms Pmut = 0.75 and αmut = 0.1 were found to be the best ones.
The infeasible population fraction for IDEA was set to αin f easible = 0.2 as in the original paper [17].

4. Experiments and Results

In the experiments the two algorithms presented in Section 3 were compared thereby providing a comparison
between an algorithm with feasibility-preserving operators and an algorithm that allows the operators to produce
infeasible solutions and aims at using selective pressure to obtain feasible solutions. The comparison was performed
on the low-cost instances with H = 3 presented in [3]. The maximum number of solution evaluations maxFE = 10000
was used as the stopping criterion and for each problem instance 10 repetitions of the test were performed.

4.1. Comparison of best results

Figure 1 presents the relative difference between the best results attained by IDEA and SGA. The bars present the
average of the value f ∗IDEA(K)− f ∗S GA(K)

f ∗S GA(K) , calculated over five instances K of IRP with the given size n. In this equation
f ∗(K) denotes the best result attained by each of the algorithms on the problem instance K. Clearly, the evolutionary
algorithm using feasibility-preserving operators has an advantage over IDEA especially for medium-size instances
(n = 20, . . . , 30). Table 1 compares numerical values of the best solutions found by the two evolutionary algorithms.
The “Comp.” column shows a comparison of the results produced by SGA using feasibility-preserving operators with
the results produced by IDEA. In this column the ’=’ sign represents equally good results and the ’+’ sign represents
those instances when the results produced by SGA were superior to those produced by IDEA, that is, when lower cost
was attained by SGA. Note, that for none of the tested instances IDEA attained better results than SGA (hence, no ’-’
in the “Comp.” column).

Results presented in Table 1 clearly show that utilizing feasibility-preserving operators allows attaining better
results and IDEA using the selective pressure towards feasible solutions is not able to produce competitive results.

4.2. Analysis of operator success rates

In this paper a mechanism for autoadaptation of operator probability based on success rates [13] is used for de-
ciding which operator to apply when solutions are mutated. Success rates are defined as the ratio of the number of
improvements bi in the criteria used for evaluating solutions to the number of times ni a given mutation operator was
applied and changed the solution: si = bi/ni. The number ni is affected by the mutation probability Pmut, the mutation
being selected or not by the autoadaptation mechanism and the fact that feasible operators may be unable to find
a modification of the original solution that preserves the feasibility and they leave the initial solution unchanged. For
SGA the bi is increased by 1 if the mutated solution has lower total cost and for IDEA the bi is increased by 1 when
solution cost is decreased or when the constraint violation measure is decreased. Therefore, the theoretical maximum
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Table 1: The best solutions found by the evolutionary algorithms.

Instance (K) SGA f ∗S GA(K) IDEA f ∗IDEA(K) Comp. Instance (K) SGA f ∗S GA(K) IDEA f ∗IDEA(K) Comp.
abs1n5 1281.68 1281.68 = abs1n30 4446.07 4878.97 +

abs2n5 1176.63 1176.63 = abs2n30 4143.44 4645.87 +

abs3n5 2020.65 2020.65 = abs3n30 4204.12 4881.15 +

abs4n5 1449.43 1449.43 = abs4n30 3785.60 4701.47 +

abs5n5 1165.40 1165.40 = abs5n30 3483.37 4476.47 +

abs1n10 2167.37 2167.37 = abs1n35 4694.30 4994.55 +

abs2n10 2510.13 2510.13 = abs2n35 4786.66 5116.12 +

abs3n10 2099.68 2099.68 = abs3n35 5335.28 5375.80 +

abs4n10 2188.01 2535.73 + abs4n35 4444.84 4953.90 +

abs5n10 2178.15 2178.15 = abs5n35 4256.25 5322.19 +

abs1n15 2271.68 2380.88 + abs1n40 5044.20 5491.36 +

abs2n15 2506.21 2673.84 + abs2n40 5038.71 5461.69 +

abs3n15 2841.06 3162.73 + abs3n40 4976.14 5554.43 +

abs4n15 2540.77 3294.42 + abs4n40 4857.85 5651.99 +

abs5n15 2453.50 3011.59 + abs5n40 4762.78 5379.00 +

abs1n20 2874.56 3848.83 + abs1n45 5423.70 5886.08 +

abs2n20 2867.75 3408.01 + abs2n45 5444.81 5585.80 +

abs3n20 3102.47 3713.05 + abs3n45 5234.45 6063.41 +

abs4n20 3572.61 4427.20 + abs4n45 5417.41 5763.73 +

abs5n20 3393.90 4113.09 + abs5n45 4679.25 5537.58 +

abs1n25 3640.98 4284.99 + abs1n50 5581.44 6072.69 +

abs2n25 3557.53 4511.36 + abs2n50 6301.82 6453.06 +

abs3n25 3733.75 4647.06 + abs3n50 5997.67 6383.36 +

abs4n25 3438.58 4747.81 + abs4n50 6228.11 6571.09 +

abs5n25 3766.45 4288.21 + abs5n50 5751.47 6264.02 +

Fig. 1: The relative difference between the best results attained by
IDEA and SGA (Section 4.1) averaged over five instances with the
given size n for each bar. The larger the value, the bigger the advantage
of SGA using feasibility-preserving operators over IDEA.

Fig. 2: Success rates of the three mutation operators used in IDEA.
Note, that the maximum possible value of the success rates is 2.0 for
this algorithm, because improving each of the two criteria counts as
a ’success’.

of the success rates is max(si) = 1 in SGA and max(si) = 2 in IDEA (in an unrealistic scenario in which every single
application of the i-th operator decreased both the cost and the constraint violation measure).

Figure 2 presents success rates for the operators used in IDEA. Obviously, the infeasible retailer removal mutation
is very likely to improve the cost criterion, but only sometimes it is able to also improve the feasibility of the solution,
namely when the retailer s removed from the route πt does not really have to be visited on that date. The other two
operators are less likely to achieve at least one success, because they both may, or may not, decrease the cost and
diminish constraint violation severity. In the case of SGA the feasible date change mutation operator achieved success
rates between 0.34 and 0.48 for all instance sizes, however, no plot is shown because of space limitation.
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5. Conclusion

In this paper an evolutionary algorithm with feasibility-preserving operators for the inventory routing problem
(IRP) was compared to the Infeasibility Driven Evolutionary Algorithm (IDEA) which allows the operators to gen-
erate infeasible solutions and tries to attain feasible ones using a split population and the selective pressure towards
decreasing the constraint violation measure. Costs produced by an evolutionary algorithm with feasibility-preserving
operators are lower than those attained by IDEA for all instances with n ≥ 15. Presented results show that designing
good feasibility-preserving operators is very important in the context of the considered problem. Clearly, applying
the selective pressure towards feasible solutions is not enough to solve the IRP effectively. Presented work motivates
further study on feasibility-preserving genetic operators for the inventory routing problem.
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