
Simheuristics for the Multiobjective
Nondeterministic Firefighter Problem in a

Time-Constrained Setting

Krzysztof Michalak1, Joshua D. Knowles2

1 Department of Information Technologies,
Institute of Business Informatics,

Wroclaw University of Economics, Wroclaw, Poland
krzysztof.michalak@ue.wroc.pl

2 School of Computer Science University of Birmingham
Edgbaston, Birmingham

j.knowles.1@cs.bham.ac.uk

Abstract. The firefighter problem (FFP) is a combinatorial problem
requiring the allocation of ‘firefighters’ to nodes in a graph in order to
protect the nodes from fire (or other threat) spreading along the edges.
In the original formulation the problem is deterministic: fire spreads from
burning nodes to adjacent, unprotected nodes with certainty.
In this paper a nondeterministic version of the FFP is introduced where
fire spreads to unprotected nodes with a probability Psp (lower than 1)
per time step. To account for the stochastic nature of the problem the
simheuristic approach is used in which a metaheuristic algorithm uses
simulation to evaluate candidate solutions. Also, it is assumed that the
optimization has to be performed in a limited amount of time available
for computations in each time step.
In this paper online and offline optimization using a multipopulation
evolutionary algorithm is performed and the results are compared to
various heuristics that determine how to place firefighters. Given the
time-constrained nature of the problem we also investigate for how long
to simulate the spread of fire when evaluating solutions produced by an
evolutionary algorithm. Results generally indicate that the evolutionary
algorithm proposed is effective for Psp ≥ 0.7, whereas for lower probabil-
ities the heuristics are competitive suggesting that more work on hybrids
is warranted.

Keywords: graph-based optimization, nondeterministic firefighter problem,
simheuristics

1 Introduction

The firefighter problem (FFP) is a discrete-time optimization problem in which
spreading of fire is modelled on a graph and the goal is to select nodes that should
be protected in order to prevent fire from spreading. The same formalism can



be used for analyzing threats in computer networks and a spread of diseases in
humans as well as in livestock. There are other similar problems complementary
to the FFP For example, in the area of research on broadcasting and computer
networks a question arises how many edges in the graph (rather than nodes)
should be prevented from transmitting to stop the spread of an infection [2].
The paper [9] studies evolving (i.e. growing) graphs and analyzes their proper-
ties. While the aforementioned paper does not discuss any means of preventing
the growth, some similarities can be seen between the evolving graphs and the
subgraph composed of the nodes on fire in the FFP.

Originally, the firefighter problem was proposed by Hartnell in 1995 [6] as a
single-objective, deterministic problem. Since then the research on the FFP has
followed three main directions. The first area is the analysis of various theoretical
aspects of the problem itself. For example, some researchers analyzed boundary
conditions for which it is possible to save the graph [4]. The second line of work
is the application of classical optimization methods, such as the linear integer
programming [3]. Only recently a third area emerged in which metaheuristic
algorithms are applied to the FFP. The paper [1], presented at the EvoCOP 2014
conference was, according to its authors, the first attempt to use a metaheuristic
approach (ACO) to solving the FFP. In a paper [11] published later the same
year the multiobjective version of the FFP was proposed and solved using and
evolutionary algorithm (EA). Two more papers on the FFP were published at
EvoCOP in 2015: [7] where variable neighborhood search (VNS) approach was
applied to the single-objective FFP and a solution representation suitable for this
algorithm was proposed, and [13] where the multiobjective version of the FFP
was tackled using a multipopulation algorithm Sim-EA with migration based on
similarity between search directions assigned to subpopulations.

All papers mentioned above concerned the deterministic version of the FFP.
In a paper [5] the FFP is studied on randomly constructed graphs with randomly
chosen starting points, but the spreading of fire is deterministic. In this paper
we introduce and study the nondeterministic version of the FFP which involves
uncertainty in the spreading of fire in the graph.

The rest of this paper is structured as follows. Section 2 provides a definition
of both the deterministic and the nondeterministic version of the FFP. In section
3 the optimization method, an EA combined with simulation-based evaluation,
is described. Section 4 presents experiments including comparisons with some
simple but effective heuristics, and discusses the results. Section 5 concludes the
paper.

2 Problem Definition

The deterministic version of the firefighter problem can be formalized in the
following way. Let G = ⟨V,E⟩ be an undirected graph with Nv vertices. Each
of the nodes of G can be in one of the states from a set L = {′B′, ′D′, ′U′}
with the interpretation ′B′ = burning, ′D′ = defended and ′U′ = untouched.
The state of the graph at time t is denoted St and for any vertex v the state of



this vertex at time t is St[v]. Apart from the graph (stored, for example as an
adjacency matrix ANv×Nv ) the initial state S0 of the graph and the number Nf

of firefighters assigned per a time step are provided in each FFP instance. Most
often the initial state S0 is constructed by setting the state of vertices from a
given non-empty set ∅ ̸= S ⊂ V to ′B′ and the remaining ones to ′U′. Therefore,
we can consider an FFP instance as an ordered triple ⟨G,S0, Nf ⟩.

The spread of fire is simulated in discrete time steps t = 0, 1, . . . , with the
graph set to the initial state S0 at t = 0. In each time step t > 0 two events
occur. First, a predefined number Nf of still untouched nodes become defended
by firefighters (i.e. change their state from ′U′ to ′D′). Then the fire spreads along
the edges of the graph G from the nodes labelled ′B′ to the neighbouring nodes
labelled ′U′. Nodes defended by firefighters before fire gets to them (i.e. marked
′D′) remain protected until the end of the simulation. Conversely, nodes that
catch on fire are considered lost and firefighters are not assigned to them. The
simulation ends when fire cannot spread anymore because all nodes adjacent
to the burning ones are defended (we say that fire is contained) or when all
undefended nodes are burning.

A very often used representation of solutions of the FFP is a permutation-
based representation, even though other representations are also considered [7].
In the permutation-based representation an individual solution is encoded as a
permutation π of numbers 1, . . . , Nv. When firefighters are assigned, the first
Nf numbers for which the corresponding vertices are untouched (′U′) are taken
from π and the state of these selected vertices is changed to ′D′. The goal in the
single-objective FFP is to maximize the number of non-burning nodes (’D’
or ’U’) at the simulation end. Note, that we are only interested in the state of
the nodes. Edges in the graph just define the topology and are not themselves
subject to burning nor protecting by firefighters.

In the paper [11] the multiobjective version of the FFP was proposed in
which there arem values vj(v), j = 1, . . . ,m assigned to each node v in the graph.
The objectives fj , j = 1, . . . ,m attained by a given solution π are calculated
by simulating the spreading of fire from the initial state S0 until the fire stops
spreading. When the final state St is reached the objectives are calculated as:
fj =

∑
v∈V :St[v] ̸=′B′ vj(v), where vj(v) is the value of the node v according to

the j-th criterion.
In this paper we tackle the multiobjective version of the FFP described above,

but contrary to the paper [11] we introduce the nondeterminism to the problem.

2.1 Nondeterministic FFP as a dynamic optimization problem

The nondeterministic version of the FFP used in this paper can be described
similarly as the deterministic one with one key difference that there is an uncer-
tainty in the way the fire spreads (we assume, however, that the initial set S of
burning nodes is fixed). For describing the nondeterministic spreading of fire a
simple model is used in which, in each time step t, for every edge e = ⟨v1, v2⟩ ∈ E
such that St[v1] =

′B′ and St[v2] =
′U′ the state of the vertex v2 is set to

′B′ with
a constant probability Psp ≤ 1. Formally, assume that the state of the graph is



represented as a vector of length Nv of states from the set L and the edges are
represented as an adjacency matrix A = [aij ]Nv×Nv containing {0, 1} elements
with aij = 1 denoting that there exists an edge between vertices vi and vj . Then
a procedure that transforms the current state St at a time step t to the state
St+1 at the next time step can be implemented as shown in Algorithm 1. In this
procedure rand() is a function that returns a value randomly drawn from the
uniform probability distribution on the [0, 1) range.

Algorithm 1 Nondeterministic spreading of fire in the graph (one time step).

IN: St - the state of the graph at a time step t
OUT: St+1 - the state at a time step t+ 1 (to be calculated by this procedure)

St+1 := St // Copy the state to the next time step

for i := 1, . . . , Nv do // Allow fire to spread
if St[i] == ′B′ then

for j := 1, . . . , Nv do
if (A[i, j] == 1) and (St[j] == ′U′) and (rand() < Psp) then

St+1[j] :=
′B′

end if
end for

end if
end for
return St+1

It is worth noticing that in the deterministic version of the FFP the spread
of fire in the graph is dynamic, but the optimization problem is, in fact, static.
This follows from the fact that once a solution (i.e. a permutation) is selected the
spreading of fire can be exactly simulated from the initial state to the very end.
Therefore, the optimizer can always work with the initial state and can obtain an
exact evaluation regardless if it is a single-objective problem or a multiobjective
one. To the contrary, the nondeterminism makes the problem truly dynamic.
Because it is not possible to predict the spread of fire with certainty, the solution
chosen as the best one may change as time progresses depending on which nodes
actually caught on fire and which did not.

As with any dynamic optimization problem two typical approaches are the
offline and online optimization. In the offline approach we try to find the best
permutation π of firefighters and then, as fire spreads, we assign firefighters using
the same π at each time step. In the online approach the optimizer can take into
consideration how the fire did actually spread and which nodes are burning at
each time step t > 0. Therefore, a different permutation πt can be produced at a
time t step and used for assigning firefighters in this particular time step. In this
paper we assume, that the already assigned firefighters cannot be reallocated, so
the nodes that were defended remain defended and the new permutation πt only
affects the assignment of firefighters done after this permutation was generated.



3 Simheuristics

The prohibitive computational cost of running exact solvers on larger instances
of some combinatorial problems can suggest the use, instead, of heuristics, or
metaheuristics such as EAs. We adopt this approach here and use simulation of
the spreading fire to enable the candidate solutions proposed by the EA to be
evaluated. In previous work on the deterministic version of the FFP the eval-
uation of a permutation π was performed by simulating the spread of fire in
the graph while simultaneously assigning firefighters according to the ordering
determined by the permutation π. This approach can also be used for the non-
deterministic version of the FFP. In fact, the approach called “simheuristics” –
combining simulation with metaheuristic optimization was proposed in a recent
survey [8] as a proper approach to nondeterministic optimization. Of course,
in the case of nondeterministic problems each run of the simulation can yield
different values of the optimization criteria. Therefore, in this paper we adopt
an approach in which we perform a number Nsim of simulations for a given
solution (permutation) π and then average the results. In order to speed up
computations, in the experiments described in this paper the simulation routine
was implemented for a GPU massively-parallel architecture using the CUDA
technology. From the Nsim different values of the number of the saved nodes
obtained in these runs we calculate a mean value for each of the objectives fj ,
j = 1, . . . ,m. Therefore, the implementation of the optimization algorithm is
split into two parts: an EA that runs on the CPU and a simulation routine that
runs on the GPU in Nsim parallel threads (see Figure 1).

 

 

 

 

CPU (EA) 
 

 

 

 

 
 

 

 

GPU (Evaluation) 

 

π, G, Sin, Nsteps 

R
u

n
 N

s
im

 t
h

re
a

d
s 

Genetic 

operators 
f1, f2 

mean f1 and f2 

f1 

f2 

f1(π ) = f1 

f2(π ) = f2 

. 

. 

. 

f1, f2 

Simulate Nsteps time steps 
f1, f2 

Simulate Nsteps time steps 

Simulate Nsteps time steps 

Fig. 1. Implementation of the simheuristic on a CPU/GPU machine.

Each thread simulates the spreading of fire starting from a given initial state
Sin until a predefined number of time steps Nsteps is completed or until fire
can no longer spread. The working of a single simulation thread is presented in
Algorithm 2.

The SpreadingFinished(St) function used in Algorithm 2 checks if the
fire spreading has finished for a given graph state St. The spreading of fire is



Algorithm 2 The working of a single simulation thread.

IN: Sin - an initial state of the graph for the simulation
π - a solution to test

t := 0 // Simulation of the spreading of fire
S0 = Sin

while not SpreadingFinished(St) and t < Nsteps do
St+1 := AssignFirefighters(St, π)
St+1 := SpreadFire(St+1);
t := t+ 1

end while

Set fj := 0 for j = 1, . . . ,m // Evaluation of the final state
for v ∈ V do

if St[v] ̸= ′B′ then
for j := 1, . . . ,m do

fj := fj + vj(v)
end for

end if
end for

considered finished if there are no untouched nodes adjacent to the burning
ones, that is ¬∃i, j : (St[vi] =

′B′ ∧ St[vj ] =
′U′ ∧A[i, j] = 1), where A is the

adjacency matrix of the graph G. The AssignFirefighters procedure assigns
firefighters to those Nf untouched nodes that are placed first in the permutation
π. The SpreadFire procedure performs one time step of the nondeterministic
fire spreading according to Algorithm 1.

In this paper the Sim-EA algorithm [12] is used that was applied to the
multiobjective FFP in a previous paper [13] and was found to outperform a
well-known multiobjective optimization algorithm MOEA/D [10]. The Sim-EA
is a decomposition-based approach in which several populations P1, . . . , PNsub

perform optimization with respect to scalar objectives obtained by aggregating
the original ones using different weight vectors λ(1), . . . , λ(Nsub). In Sim-EA speci-
mens can migrate between populations according to various migration strategies.

In the paper [13] several migration strategies were tested and the “rank”
strategy that worked best is used this paper. For each destination subpopulation
Pd, d = 1, . . . , Nsub all subpopulations Ps, where s ̸= d are ranked according to
the dot product of weight vectors λ(d) · λ(s). The source population is selected
using the roulette wheel selection with probabilities proportional to the ranks
of the subpopulations. Then, Nimig best specimens from the source population
are taken and merged into the population Pd. In the merge phase each migrated
specimen is matched against the currently weakest specimen in the destination
population Pd. The new specimen replaces the currently weakest specimen in the
destination population Pd if it has a higher value of the objectives aggregated
using the weight vector λ(d). The main loop of the Sim-EA algorithm is presented
in Algorithm 3. It is very similar to the one used in papers [12] and [13], but
a different stopping condition is used in this paper. In the previous works the



optimization was run for a preset number of generations Ngen. In this paper we
use a time limit Tmax in which the main loop of the algorithm has to finish,
because we assume, that decisions have to be made in a given amount of time.
Also, we are interested in how to use the available time effectively, by either
making longer simulation runs (large Nsteps) or making shorter simulation runs
(small Nsteps) allowing more generations for the EA. Because the EA runs on
a regular CPU and simulations are performed in parallel on a GPU it is hard
to find a common measure of the amount of computations done on both devices
other than the running time limit.

Algorithm 3 The main loop of the Sim-EA algorithm (see also [12] and [13])

IN: P1, P2, . . . , PNsub - populations, one for each search direction λ(d)

Sin - state of the graph for which to optimize
OUT: P1, P2, . . . , PNsub - populations after evolution

for d := 1, . . . , Nsub do // Initial evaluation
Evaluate(Sin, P1, λ

(d))
end for
while not StoppingConditionMet() do

for d := 1, . . . , Nsub do // Genetic operators
P’ := GeneticOperators(Pd)
Evaluate(Sin, P

′, λ(d))
Pd := Pd ∪ P ′

end for

for d := 1, . . . , Nsub do // Source populations
s := SelectSourcePopulation(d)
P ′
d := the Nimig best specimens from Ps

end for
for d := 1, . . . , Nsub do // Migration

for x ∈ P ′
d do

Evaluate(Sin, {x}, λ(d))
w := the weakest specimen in Pd

Pd := Pd − {w}
b := BinaryTournament(w, x, λ(d))
Pd := Pd ∪ {b}

end for
end for

for d := 1, . . . , Nsub do // Elitist selection
e := the best specimen in Pd

Pd := Select(Pd\{e}, Npop − 1)
Pd := Pd ∪ {e}

end for
end while

The main loop of the Sim-EA uses the following procedures:



StoppingConditionMet() – A function that determines if the stopping
condition is satisfied, such as the numbed of generations completed, maximum
running time, etc.

GeneticOperators(P ) – Applies the crossover and mutation to specimens
in P and returns the new specimens. In papers [11] and [13] a mechanism for ad-
justing probabilities of the application of several different crossover and mutation
operators was introduced. The same mechanism is used in this paper. The same
10 crossover and 5 mutation operators were used as in the previous papers.
The crossover operators were: Cycle Crossover (CX), Linear Order Crossover
(LOX), Merging Crossover (MOX), Non-Wrapping Order Crossover (NWOX),
Order Based Crossover (OBX), Order Crossover (OX), Position Based Crossover
(PBX), Partially Mapped Crossover (PMX), Precedence Preservative Crossover
(PPX) and Uniform Partially Mapped Crossover (UPMX). The mutation op-
erators were: displacement mutation, insertion mutation, inversion mutation,
scramble mutation and transpose mutation.

Evaluate(Sin, P, λ) – Evaluates specimens from a given set using Nsim par-
allel simulations performed on a GPU as shown in Figure 1 starting at the state
Sin. In the simulation estimates of the average values f1, . . . , fm of m objectives
are obtained. The fitness of the specimens is then calculated by aggregating these
objectives using a given weight vector λ.

SelectSourcePopulation(d) – Selects a population Ps to migrate speci-
mens from into Pd. Various strategies can be used for selecting the source pop-
ulation Ps. In the paper [13] several strategies were tested and the one that
worked best with the FFP turned out to be to select the source population us-
ing the roulette wheel selection procedure based on ranking calculated using the
dot product of weight vectors λ(d) · λ(s).

BinaryTournament(s1, s2, λ) – compares two specimens s1 and s2 accord-
ing to the fitness calculated by aggregating the m objectives of the specimens
using a given weight vector λ. Returns the winning specimen.

Select(P, n) – selects n specimens from a given population P using the
binary tournament selection method.

Because this paper concerns a dynamic optimization problem, the optimiza-
tion can be performed either in an offline or in an online mode. In the offline
mode one long optimization run is performed based on the initial state of the
graph. The best permutation π is selected and then, as fire spreads, firefighters
are assigned according to this permutation in increments of Nf per a time step.
Because in this paper a multiobjective problem is concerned, we select a different
permutation π(d), d = 1, . . . , Nsub for each optimization direction λ(d). In the
offline mode we simulate the spreading of fire for each optimization direction λ(d)

separately starting from the initial state of the graph and assigning firefighters
using π(d). The final evaluation Ed along each direction λ(d) is equal to the sum
of the values of the non-burning nodes weighted using λ(d) when the simulation
ends. The offline optimization is presented in Algorithm 4.

In the online mode the optimization is performed at each time step for a
short period of time. The best currently known permutation is selected and



Algorithm 4 The optimization in the offline mode.

for d := 1, . . . , Nsub do
Pd := InitPopulation(Npop)

end for
Evolve({P1, P2, . . . , PNsub}, S0, Tmax)

for d := 1, . . . , Nsub do
π(d) := SelectBestSolution(Pd)

t := 0 // Simulation of the spreading of fire

S
(d)
t := S0

while not SpreadingFinished(S
(d)
t ) do

S
(d)
t+1 := AssignFirefighters(S

(d)
t , π(d))

S
(d)
t+1 := SpreadFire(S

(d)
t+1);

t := t+ 1
end while

Ed := 0 // Evaluation of the final state for the d-th subproblem
for v ∈ V do

if S
(d)
t [v] ̸= ′B′ then
for j := 1, . . . ,m do

Ed := Ed + λ
(d)
j vj(v)

end for
end if

end for
end for

firefighters are assigned using this permutation when fire spreads in the current

time step. For the multiobjective problem a different permutation π
(d)
t is selected

for each optimization direction λ(d) at each time step t. Because of that we have

to keep the current state S
(d)
t of the simulation at the time step t for each search

direction λ(d). The final evaluation Ed along each direction λ(d) is equal to the

sum of the values of the non-burning nodes in the state S
(d)
t weighted using λ(d)

when the simulation ends. The optimization in the online mode is presented in
Algorithm 5.

The algorithms 4 and 5 use the following procedures:

InitPopulation(n) - Creates a given number n of new specimens initialized
as random permutations.

Evolve({P1, P2, . . . , PNsub
}, St, Tmax) - Runs the main loop of the Sim-EA

algorithm described in Algorithm 3 with the maximum running time Tmax as
the stopping criterion. This run of the algorithm optimizes solutions based on a
given graph state St.

SelectBestSolution(Pd) - Selects the best solution from a given population
Pd with respect to fitness calculated using the weight vector λ(d).

SpreadingFinished(St) - Checks if the fire spreading has finished for a
given graph state St. The spreading of fire is considered finished if there are no



Algorithm 5 The optimization in the online mode.
t := 0
for d := 1, . . . , Nsub do

Pd := InitPopulation(Npop)

S
(d)
t := S0

end for

while ∃d not SpreadingFinished(S
(d)
t ) do

Evolve({P1, P2, . . . , PNsub}, S
(d)
t , Tmax)

for d := 1, . . . , Nsub do
if not SpreadingFinished(S

(d)
t then

π
(d)
t := SelectBestSolution(Pd)

S
(d)
t+1 := AssignFirefighters(S

(d)
t , π

(d)
t )

S
(d)
t+1 := SpreadFire(S

(d)
t+1)

end if
end for
t := t+ 1

end while

for d := 1, . . . , Nsub do
Ed := 0 // Evaluation of the final state for the d-th subproblem
for v ∈ V do

if S
(d)
t [v] ̸= ′B′ then
for j := 1, . . . ,m do

Ed := Ed + λ
(d)
j vj(v)

end for
end if

end for
end for

untouched nodes adjacent to the burning ones, that is ¬∃i, j : St[vi] =
′B′ ∧

St[vj ] =
′U′ ∧A[i, j] = 1, where A is the adjacency matrix of the graph G.

AssignFirefighters(St, π) - Modifies the state St by assigning firefighters
to those Nf untouched nodes that are placed first in the permutation π.

SpreadFire(St) - Performs one time step of the nondeterministic fire spread-
ing according to Algorithm 1.

4 Experiments and Results

The experiments were aimed at investigating three issues: comparing the online
and offline optimization, comparing the two with some simple heuristics that
determine how to place firefighters and determining the influence of the Nsteps

parameter on the quality of the obtained results. The larger the Nsteps parameter
the longer the simulation used for evaluating specimens in the EA. Therefore, we
assumed that the entire main loop of the EA can run for at most Tmax seconds
and when Nsteps is smaller more generations of the EA can fit within the same
time limit.



The time limit for the online optimization was set to Tmax = 60 seconds
per a time step and to Tmax = 300 seconds for the offline optimization. The
equipment used for experiments was the Intel Q6600 CPU running at 2.4 GHz
with 4GB of RAM with a 470 GTX GPU with 1.25 GB of RAM. However, the
memory sizes did not play an important role in the experiments, because the
actual memory usage was far lower than the available maximum. The number of
simulations run in parallel was set to Nsim = 200. It is worth mentioning, that
even on moderately advanced 470 GTX GPUs such number of threads can easily
run in parallel, so the running time of the simulations cannot be significantly
decreased by just lowering the Nsim number.

Data sets used in the experiments were created in the same way as used in a
previous paper on the FFP [13]. In these data sets the graph G was generated
by randomly determining, for each pair of vertices vi, vj , if there exists an edge
⟨vi, vj⟩. The probability of generating an edge was set to Pedge = 2.5/Nv, where
Nv was the number of vertices. This value was used in order to ensure that the
mean number of edges adjacent to a vertex was similar for all the instances.

Costs vj(v), j = 1, . . . ,m assigned to vertices of the graph G were generated
by drawing pairs of random values with the uniform probability on a triangle
formed in R2 by points [0, 0], [0, 100], [100, 0]. With this method of cost as-
signment individual costs fall in the range [0, 100] but also the sum of costs
associated with a single vertex cannot exceed 100. Therefore it is not possible
to maximize both objectives at the same time, so the ability of the algorithm to
find good trade-offs can be tested.

The number of initially burning nodes in each graph was set to Ns = 1 and
the number of firefighters to assign in each time step was set to Nf = 2. Because
of the higher computational cost of the experiments involving several values of
the Psp and Nsteps parameters the instances used in this paper were smaller than
in [13] with Nv = 30, 40, 50, 75, 100 and 125. For each graph size Nv, 30 test

instances I
(1)
Nv

, . . . I
(30)
Nv

were prepared following the procedure described above to
allow comparing the algorithms on different, but fixed, test cases.

The nondeterminism is involved in how the fire spreads in the graph, therefore
the same graph structure can be used for different values of Psp. In this paper five
values Psp = 0.3, 0.5, 0.7, 0.9 and 1.0 were used. For the length of the simulation
Nsteps = 2, 4, 6, 8, 10 and ∞ were used. The last value of Nsteps = ∞ causes
the simulation to run until the fire can no longer spread regardless of how many
time steps it takes.

The number of subpopulations was Nsub = 20 with each subpopulation size
Npop = 100. The number of specimens migrating between the populations was
set to Nimig = 0.1 ·Npop = 10. Similarly as in the paper [13] a set of 10 crossover
operators and 5 mutation operators was used in the experiments with an au-
toadaptation mechanism used for adjusting probabilities of the usage of the
operators. The number of new specimens generated by the crossover operator
Ncross was equal to the population size Npop and the probability of mutation
was set to Pmut = 0.05. The minimum probability of selecting a particular op-



erator in the auto-adaptation mechanism was set to Pmin = 0.02 for crossover
auto-adaptation and to Pmin = 0.05 for mutation auto-adaptation.

For each mode of optimization (online and offline) and for each Psp, Nsteps

pair 30 repetitions of the optimization were performed. In each repetition the
Ed values, calculated as shown in Algorithms 4 and 5 for d = 1, . . . , Nsub were
stored.

The performance of the optimization algorithms was compared to heuristics
that suggest where to place firefighters. Three different heuristics were tested:

– Max degree - Assign firefighters to those nodes first that have higher de-
grees among untouched (’U’) nodes.

– Max degree (adjacent) - Assign firefighters to those nodes first that have
higher degrees among those untouched (’U’) nodes that are adjacent to burn-
ing (’B’) nodes.

– BFS - Perform a breadth-first search (BFS) in the graph starting at the
burning nodes that finds possible paths from the burning (’B’) nodes to the
untouched (’U’) ones. For each untouched node v determine the smallest
number of steps s it takes to get to this node from a burning one. Assign
a value of PBFS = (Psp)

s to node v. Assign firefighters to those nodes first
that have higher values of PBFS .

These heuristics were used in each time step to select the best Nf locations
for firefighters. If in one time step more than Nf nodes had the maximum score
according to the selected heuristic, Nf nodes were selected randomly from them.
An evaluation of the performance of the heuristics was done in a similar way to
the evaluation of the offline optimizer (see Algorithm 4). For each optimization
direction λ(d), d = 1, . . . , Nsub, a simulation of fire was performed with a selected
heuristic used for allocating firefighters. When simulation finished, the score Ed

was calculated by adding cost values assigned to non-burning nodes weighted
using λ(d). Similarly as with the optimization algorithms, the tests with the
heuristics were repeated 30 times. In the k-th of the 30 repetitions of the tests the

same test instance I
(k)
Nv

was used with both modes of optimization, all heuristics
and all Psp and Nsteps values. Therefore, a range of methods was tested on a
diversified set of 30 test instances, but each method worked in the same starting
conditions.

Median values of the Ed score (see Algorithms 4 and 5) are presented in
Tables 1-6. The best result obtained by a given type of methods (online, offline,
heuristic) for a given Psp is marked by an arrow ’→′. Table 7 shows the results
of a statistical comparison of the optimizers performed using the Wilcoxon test
at α = 0.05. This comparison was performed between the 30 measurements
obtained for the best value of Nsteps for each of the optimizers. For smaller
instances (N ≤ 50) both optimization approaches are often comparable, even
though the online method was significantly better four times (the offline one
just once). For larger instances (N ≥ 75) the online optimizer outperformed
the offline one 12 times (with 3 cases undecided, none in favour of the offline
optimizer).



Table 1. Median values of the Ed score obtained for 30 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1364.81 1228.16 959.29 703.56 676.03
optimization Nsteps = 4 1386.63 1253.57 → 1096.32 → 914.42 → 855.57

Nsteps = 6 → 1388.47 1254.53 1064.32 889.36 826.10
Nsteps = 8 1382.90 → 1276.79 1081.58 887.28 801.36
Nsteps = 10 1363.90 1241.03 1061.86 871.30 823.18
Nsteps = ∞ 1382.90 1269.30 1088.25 882.06 828.57

Offline Nsteps = 2 1189.17 817.99 653.77 566.83 534.29
optimization Nsteps = 4 1329.74 1156.53 892.96 831.48 791.11

Nsteps = 6 → 1341.22 1176.64 984.11 → 888.73 866.42
Nsteps = 8 1323.47 1160.76 968.56 880.54 → 869.50
Nsteps = 10 1322.26 → 1187.83 → 1010.22 886.86 859.31
Nsteps = ∞ 1330.42 1155.04 965.01 885.53 819.07

Heuristics Max. degree 850.32 676.07 549.14 416.60 385.08
Max. degree (adjacent) → 1352.98 → 1188.69 → 907.59 → 722.75 → 703.93
BFS 1294.78 768.77 752.02 562.32 488.12

Table 2. Median values of the Ed score obtained for 40 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1795.27 1545.76 903.35 720.89 661.38
optimization Nsteps = 4 1803.58 → 1677.30 → 1294.07 → 1002.20 → 923.94

Nsteps = 6 → 1806.78 1675.89 1114.45 913.54 872.59
Nsteps = 8 1800.09 1541.41 1064.09 895.61 872.05
Nsteps = 10 1795.85 1378.15 1049.11 901.01 877.04
Nsteps = ∞ 1759.37 1420.91 1047.97 896.04 886.23

Offline Nsteps = 2 1470.07 925.41 723.90 617.66 574.65
optimization Nsteps = 4 1762.00 1310.05 975.70 846.58 843.00

Nsteps = 6 → 1765.74 1512.08 → 1101.16 → 968.91 921.43
Nsteps = 8 1764.88 → 1561.17 1051.66 938.20 920.22
Nsteps = 10 1729.15 1373.84 1055.34 948.79 → 939.76
Nsteps = ∞ 1720.21 1418.45 1032.26 951.91 904.45

Heuristics Max. degree 1120.14 724.68 583.10 481.13 442.67
Max. degree (adjacent) 1766.37 → 1771.33 → 1019.21 → 813.96 → 809.71
BFS → 1848.82 894.25 825.46 552.55 539.19

Table 3. Median values of the Ed score obtained for 50 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 1300.12 626.98 503.00 431.68 408.95
optimization Nsteps = 4 → 1386.02 679.02 615.17 → 579.97 562.21

Nsteps = 6 1385.33 → 875.73 → 670.68 567.47 → 563.33
Nsteps = 8 1269.63 795.62 634.16 575.82 556.82
Nsteps = 10 1313.69 784.41 634.71 577.18 553.11
Nsteps = ∞ 1071.02 771.25 640.98 570.84 560.65

Offline Nsteps = 2 850.63 601.22 471.63 412.41 390.39
optimization Nsteps = 4 1081.48 718.70 610.37 572.84 552.81

Nsteps = 6 → 1128.72 → 799.05 → 654.90 601.09 604.99
Nsteps = 8 1093.90 750.79 625.35 598.93 613.88
Nsteps = 10 1029.41 714.61 626.82 → 604.06 611.61
Nsteps = ∞ 921.29 698.84 629.26 601.70 → 614.32

Heuristics Max. degree 716.63 477.24 399.16 336.53 296.22
Max. degree (adjacent) → 1419.40 → 803.09 → 577.10 → 437.66 → 440.70
BFS 1275.95 581.44 473.22 337.26 342.84

Another aspect of the optimization is the number of the steps Nsteps for
which the simulation is carried out. The shorter the simulation the more gen-
erations can the EA perform in the same amount of time. Figure 2 shows how
many times the best result was obtained for Nsteps = 2, 4, 6, 8, 10,∞. Clearly,
letting the simulation run without limit can deteriorate the results of the opti-
mization. For larger instances (Nv = 75, 100 and 125) the unlimited simulation
length worked best for Psp = 0.3 and 0.5, but for larger values of Psp limiting the
duration of simulations worked better. Although not conclusive, this observation



Table 4. Median values of the Ed score obtained for 75 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 956.88 614.59 487.15 415.99 389.99
optimization Nsteps = 4 981.13 620.49 531.32 571.25 550.45

Nsteps = 6 992.92 774.51 → 685.25 → 629.67 → 596.58
Nsteps = 8 959.63 806.06 674.45 612.49 595.02
Nsteps = 10 1090.14 795.37 677.82 608.71 596.54
Nsteps = ∞ → 1092.12 → 807.45 671.97 610.85 593.34

Offline Nsteps = 2 922.30 640.93 522.01 454.48 424.78
optimization Nsteps = 4 → 1042.61 700.90 608.54 567.38 587.20

Nsteps = 6 961.70 → 715.41 → 633.43 → 585.37 600.81
Nsteps = 8 931.17 691.37 602.31 573.06 604.34
Nsteps = 10 895.80 676.03 598.90 579.47 → 606.50
Nsteps = ∞ 868.76 680.01 598.87 569.24 604.17

Heuristics Max. degree 849.68 570.76 440.48 343.04 341.51
Max. degree (adjacent) → 2272.92 → 1114.03 → 617.77 → 526.89 → 485.55
BFS 2269.66 664.75 491.11 400.65 381.74

Table 5. Median values of the Ed score obtained for 75 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 956.88 614.59 487.15 415.99 389.99
optimization Nsteps = 4 981.13 620.49 531.32 571.25 550.45

Nsteps = 6 992.92 774.51 → 685.25 → 629.67 → 596.58
Nsteps = 8 959.63 806.06 674.45 612.49 595.02
Nsteps = 10 1090.14 795.37 677.82 608.71 596.54
Nsteps = ∞ → 1092.12 → 807.45 671.97 610.85 593.34

Offline Nsteps = 2 922.30 640.93 522.01 454.48 424.78
optimization Nsteps = 4 → 1042.61 700.90 608.54 567.38 587.20

Nsteps = 6 961.70 → 715.41 → 633.43 → 585.37 600.81
Nsteps = 8 931.17 691.37 602.31 573.06 604.34
Nsteps = 10 895.80 676.03 598.90 579.47 → 606.50
Nsteps = ∞ 868.76 680.01 598.87 569.24 604.17

Heuristics Max. degree 849.68 570.76 440.48 343.04 341.51
Max. degree (adjacent) → 2272.92 → 1114.03 → 617.77 → 526.89 → 485.55
BFS 2269.66 664.75 491.11 400.65 381.74

Table 6. Median values of the Ed score obtained for 125 nodes.
Method Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0

Online Nsteps = 2 963.07 637.80 519.84 440.04 397.65
optimization Nsteps = 4 868.58 600.06 501.59 461.53 482.77

Nsteps = 6 906.73 692.04 723.36 → 660.97 → 630.15
Nsteps = 8 917.48 893.64 756.26 658.30 625.60
Nsteps = 10 1108.00 907.41 → 766.36 653.44 623.34
Nsteps = ∞ → 1230.37 → 912.10 751.03 656.34 621.58

Offline Nsteps = 2 → 961.28 688.38 571.53 491.56 462.26
optimization Nsteps = 4 953.17 662.25 532.82 483.99 491.69

Nsteps = 6 891.00 653.68 → 601.89 → 566.59 559.24
Nsteps = 8 905.52 701.63 597.22 538.33 559.82
Nsteps = 10 943.15 → 711.44 594.74 536.91 → 563.81
Nsteps = ∞ 936.90 701.85 597.07 539.40 559.68

Heuristics Max. degree 917.63 587.32 500.42 414.06 377.07
Max. degree (adjacent) 3957.17 → 844.74 → 672.27 → 537.26 → 503.02
BFS → 3975.47 703.07 551.18 444.86 415.94

may indicate that for lower values of Psp it is harder to predict the short-time
movement of fire and thus averaged behaviour observed in the longer run be-
comes more important. The optimization algorithms were also compared with
heuristic methods described in Section 4. Clearly, the best of the tested heuristics
is the one that considers placing the firefighters adjacently to the burning nodes
(see Figure 3). Statistical comparison of optimization algorithms with heuristics
shown that the “Max degree (adjacent)” heuristic is a very effective strategy
when the probability of the spreading of fire is low (Psp ≤ 0.5). It was signifi-



cantly better than the online optimizer in 7 out of 12 cases, significantly worse
in 3 cases, with 2 cases undecided (p-value > 0.05). Compared to the offline op-
timizer it was significantly better in 11 cases, with only one case undecided. On
the other hand, in the tests for Psp ≥ 0.7 the heuristic was significantly worse
than the online optimizer 15 times out of 18 (3 cases undecided). Compared to
the offline optimizer it was significantly worse 13 times and significantly better
once (4 cases undecided).

Table 7. The results of a statistical comparison of the online and offline optimization
modes: ’N’ - online better, ’F’ - offline better, ’=’ - no statistical difference.

Nv Psp = 0.3 Psp = 0.5 Psp = 0.7 Psp = 0.9 Psp = 1.0
30 = N N = =
40 N = = = =
50 = N = = F
75 = N N N =

100 N N N N =
125 N N N N N

0000

5555

10101010

15151515

20202020

0000

5555

10101010

15151515

20202020

2222 4444 6666 8888 10101010 ∞∞∞∞

Online Offline

Fig. 2. The number of times each value of
Nsteps produced the best result.

0000

5555

10101010

15151515

20202020

25252525

30303030

Max Max BFS

0000

5555

10101010

15151515

20202020

25252525

30303030

Max

degree

Max

degree

(adjacent)

BFS

Heuristic

Fig. 3. The number of times each heuris-
tic produced the best result.

These results might also indicate the fact that for lower values of Psp it is
harder to predict the short-time movement of fire. In such situation heuristics
may be more effective than trying to assess what location of firefighters will be
best based on simulations with a high level of uncertainty.

5 Conclusion

In this paper the multiobjective nondeterministic firefighter problem is studied.
For solving this problem the Sim-EA multipopulation EA is applied that was
shown in [13] to outperform the MOEA/D algorithm on the FFP. Solving the
nondeterministic FFP requires dynamic optimization and therefore the effective-
ness of the algorithm in the online and offline optimization modes is compared.
For small problem instances both approaches are comparable, but for larger ones
the online approach seems better. Also, it was tested how long to run the simu-
lation that evaluates candidate solutions. Limiting the length of simulation runs
often improves the results, but for low Psp longer simulations may be better.
Evolutionary optimization was compared with several heuristic approaches that



use simple rules for allocating firefighters. The heuristic that selects nodes with a
high degree placed adjacently to the already burning ones worked by far the best.
It significantly outperformed the online optimizer in several cases for Psp ≤ 0.5
and the offline optimizer in all cases except one. For Psp ≥ 0.7, however, the
heuristic approach performed poorly. The observations concerning the length of
simulation runs and comparison of optimization and heuristics seem to indicate
that for low Psp it is hard to obtain good evaluations of solutions using simu-
lations. Because different types of methods work best for different probabilities
of the spreading of fire, further work on the nondeterministic FFP may concern
hybrid methods combining heuristics with online optimization.

References

1. Blum, C., et al.: The firefighter problem: Application of hybrid ant colony opti-
mization algorithms. In: Blum, C., Ochoa, G. (eds.) Evolutionary Computation in
Combinatorial Optimisation, LNCS, vol. 8600, pp. 218–229. Springer Berlin Hei-
delberg (2014)

2. Comellas, F., Mitjana, M.: Broadcasting in small-world communication networks.
In: Kaklamanis, C., Kirousis, L. (eds.) 9th Int. Coll. on Structural Information and
Communication Complexity. pp. 73–85 (2002)

3. Develin, M., Hartke, S.G.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

4. Feldheim, O.N., Hod, R.: 3/2 firefighters are not enough. Discrete Applied Math-
ematics 161(1-2), 301–306 (2013)

5. Garca-Martnez, C., et al.: The firefighter problem: Empirical results on random
graphs. Computers & Operations Research 60, 55–66 (2015)

6. Hartnell, B.: Firefighter! an application of domination. In: 20th Conference on
Numerical Mathematics and Computing (1995)

7. Hu, B., Windbichler, A., Raidl, G.R.: A new solution representation for the fire-
fighter problem. In: Ochoa, G., Chicano, F. (eds.) Evolutionary Computation in
Combinatorial Optimization, LNCS, vol. 9026, pp. 25–35. Springer (2015)

8. Juan, A.A., other: A review of simheuristics: Extending metaheuristics to deal with
stochastic combinatorial optimization problems. Operations Research Perspectives
2, 62–72 (2015)

9. Kumar, R., et al.: Stochastic models for the web graph. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science. pp. 57–65. FOCS ’00,
IEEE Computer Society (2000)

10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. on Evolut. Comput. 13(2), 284–302
(2009)

11. Michalak, K.: Auto-adaptation of genetic operators for multi-objective optimiza-
tion in the firefighter problem. In: Corchado, E., et al. (eds.) IDEAL 2014, LNCS,
vol. 8669, pp. 484–491. Springer (2014)

12. Michalak, K.: Sim-EA: An evolutionary algorithm based on problem similarity. In:
Corchado, E., et al. (eds.) IDEAL 2014, LNCS, vol. 8669, pp. 191–198. Springer
(2014)

13. Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multi-
objective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) Evolutionary Com-
putation in Combinatorial Optimization, LNCS, vol. 9026, pp. 184–196. Springer
(2015)


