
Multiobjective Dynamic Constrained

Evolutionary Algorithm for Control of a

Multi-Segment Articulated Manipulator

Krzysztof Michalak1, Patryk Filipiak2, and Piotr Lipinski2

1 Department of Information Technologies,
Institute of Business Informatics,

Wroclaw University of Economics, Wroclaw, Poland
krzysztof.michalak@ue.wroc.pl

2 Computational Intelligence Research Group,
Institute of Computer Science,

University of Wroclaw, Wroclaw, Poland
{patryk.filipiak,piotr.lipinski}@cs.ii.uni.wroc.pl

Abstract. In this paper a multiobjective dynamic constrained evolu-
tionary algorithm is proposed for control of a multi-segment articulated
manipulator. The algorithm is tested in simulated dynamic environments
with moving obstacles. The algorithm does not require previous training
- a feasible sequence of movements is found and maintained based on
a population of candidate movements. The population is evolved using
typical evolutionary operators as well as several new ones that are dedi-
cated for the manipulator control task. The algorithm is shown to handle
manipulators with up to 100 segments. The increased maneuverability of
the manipulator with 100 segments is well utilized by the algorithm. The
results obtained for such manipulator are better than for the 10-segment
one which is computationally easier to handle.

Keywords: inverse kinematics, multiobjective evolutionary optimiza-
tion, constrained problems

1 Introduction

Inverse Kinematics (IK) is the problem of finding such configuration of an ar-
ticulated robotic arm that satisfies certain constraints concerning the position
and the orientation of its end effector. Applications of IK are very frequent in
contemporary robotics, e.g. in steering of industrial planar robots [5], automa-
tization of medical steerable needles [6], performing an optical motion capture
[1] or robotic posture control and collision avoidance [8]. Although IK can be
expressed in the algebraic form, it is highly inefficient to solve it explicitly. It
was stated in [9] that finding the desired pose for the popular case of IK prob-
lem with 6 degrees of freedom is equivalent to solving a 16th order polynomial
equation. In order to alleviate this difficulty, a number of numerical approaches
were proposed instead.



2 Problem Statement

In this paper we consider a multi-segment articulated manipulator consisting
of Ns segments that is mounted at a given point O = [xo, yo]. The segments
are connected by joints J1, . . . , JNs

(the first joint being attached at the start-
ing point O). The manipulator itself is described by a list of segment lengths
{l1, . . . , lNs

}. The position of the manipulator is determined by a list of rela-
tive angles {α1, . . . , αNs

}, αi ∈ (−π, π) (i.e. angles relative to previous segment
orientation). In this paper we assume, that αi = 0 represents a segment point-
ing in the same direction as the previous one. The endpoint of the manipulator
is expected to reach and remain as close as possible to a given target point
T = [xt, yt]. The environment in which the manipulator operates includes a set
of No obstacles {Oi}i=1,...,No

. Each obstacle Oi is a convex polygon with Mi

vertices. At no time t the manipulator may intersect any of the obstacles. Obvi-
ously, the manipulator has to move to reach the target point T and to avoid any
obstacles. We assume that the movement of the manipulator is defined by setting
values of angles between manipulator segments at discrete time instants. There-
fore, the sequence of moves that the manipulator performs during all the Nt time
steps of the entire simulation can be represented as: {α1(t), . . . , αNs

(t)}t=0,...,Nt
.

A movement between time instants t and t + 1 is performed as a linear change
of all the angles: αj(t + δ) = αj(t) · (1 − δ) + αj(t + 1) · δ, for j = 1, . . . , Ns,
δ ∈ [0, 1]. At each time instant t = 0, . . . , Nt−1 the algorithm has to calculate a
set of angles {α1(t + 1), . . . , αNs

(t + 1)} for the time instant t + 1 based on the
current set of angles {α1(t), . . . , αNs

(t)} in such a way that the endpoint E of the
manipulator remains possibly close to the target point T and the manipulator
does not intersect any obstacles during the interval [t, t + 1].

3 Evolutionary Algorithm

At each time instant t = 0, . . . , Nt−1 the evolutionary algorithm tries to find a
new set of angles for the manipulator {α1(t + 1), . . . , αNs

(t + 1)} for the time
instant t + 1 based on the current set of angles {α1(t), . . . , αNs

(t)}. The geno-
type of each specimen represents a candidate set of angles for the time instant
t + 1. The evolutionary algorithm proposed in this paper contains both some el-
ements typical to evolutionary algorithms used for constrained optimization and
some elements typical to dynamic optimization. For dealing with constraints the
algorithm uses two mechanisms used in the Infeasibility Driven Evolutionary
Algorithm (IDEA) [10]: a violation measure is used as one of the objectives and
a fraction of the population is reserved for infeasible specimens. When solving
dynamic optimization problems the loss of diversity is often an issue. To remedy
this, random immigrants are added to every generation as proposed by [7].

Objectives and constraints

The algorithm minimizes three objectives f1, f2 and f3 under two constraints
g1 and g2. All objectives and constraints are calculated for Nδ simulation steps
from time t to t+1. The n-th step (n = 1, . . . , Nδ) corresponds to time t+ n−1

Nδ−1
,



where: t - the time instant for which the evolutionary algorithm calculates the
transition to t + 1.

f1 : The first objective is the distance between the manipulator end-

point E and the target point T . If there are no obstacles between E and
T the Euclidean distance is used. If the ET line segment crosses an obstacle at
points C1 and C2 the distance is calculated as: f1 = dE(E, T )−dE(C1, C2)+dO

where dE denotes Euclidean distance and dO is the shorter of two paths between
C1 and C2 around the obstacle. The values for all simulation steps n = 1, . . . , Nδ

are averaged with weights equal to n
Nδ

. Therefore, a higher selective pressure is
put on minimizing the distance from E to T at the end of the time interval
[t, t + 1]. This is intended to give the manipulator some freedom to adjust be-
tween time instants t and t + 1, while promoting convergence to T towards the
end of the time interval [t, t + 1].

f2 : The second objective is a measure of displacement of the manipu-

lator between time instants t and t+1: f2 =
∑Ns

k=1

[

(xjk
(t+1)−xjk

(t))2 +

(yjk
(t + 1) − yjk

(t))2
]

, where: xjk
(t), yjk

(t) - the coordinates of the k − th joint
of the manipulator calculated for angles at the time instant t. Minimizing this
objective is intended to limit the occurence of rapid or violent movements of the
manipulator.

f3 : The third objective is a violation measure proposed in [10] which
represents how much the constraints are violated.

The constraints represent collisions with obstacles and self-intersections of
the manipulator. Both g1 and g2 have to be 0 for the specimen to be feasible.
Infeasible specimens have g1 > 0 or g2 > 0.

g1 : The first constraint is a measure of intersection with obstacles. If
the manipulator does not intersect with a given obstacle then the contribution
of this obstacle to the g1 constraint is 0. Otherwise, for each pair of intersection
points C1, C2 the length of the shorter of the paths connecting C1 and C2 on the
circumference of the obstacle is added to g1. If the endpoint of the manipulator
is inside the obstacle the length of the arm inside the obstacle is added.

g2 : The second constraint is a measure of self-intersections of the ma-

nipulator. This measure is calculated as the sum of 1

j·k
for those j and k for

which the manipulator segments JiJi+1 and JkJk+1 intersect.

Values of both constraints are summed for all simulations steps n = 1, . . . , Nδ.

Operators

The evolutionary algorithm proposed in this paper uses two genetic operators
typically used for real-valued chromosomes: the SBX crossover described in [2]
and the polynomial mutation operator introduced in [4]. Typical genetic opera-
tors mentioned above treat the set of angles between manipulator segments as
just an array of real numbers. Additionally, three other operators are proposed
in this paper that are dedicated for the task of articulated manipulator control.

Single joint mutation. If the polynomial mutation operator changes the
value of an angle αi positions of the segments that are placed after αi change



significantly. This effect may cause a mutated manipulator position to become
infeasible, especially in crowded environments. To mitigate this problem a second
mutation operator was designed. The new operator uses the polynomial mutation
operator to mutate individual angles. If an angle αi is mutated to α′

i a correction
is performed by calculating the change of the i-th angle δi = α′

i − αi and by
turning the joints that follow the mutated one in the opposite direciton: ∀j > i :
αj = αj − δi. This correction is intended to limit the influence of mutating one
angle αi on the entire part of the manipulator from joint Ji to the endpoint E.

The Unfold-3 operator. This operator is intended to help the manipulator
straighten by replacing any three segments by two if possible. It is designed to
be used for manipulators in which all the segments are equal to a given constant
length L. By definition this operator is only applied when there exist two joints
Ji and Ji+3 for which dE(Ji, Ji+3) ≤ 2L, where dE(·) is the Euclidean distance.
The operator sets the angles αi and αi+1 so that Ji+2 and Ji+3 are placed at
the same positions as Ji+3 and Ji+4 were before the operator was applied. Then,
all the angles that follow are corrected: ∀i + 3 ≤ j < Ns : αj = αj+1. The last
segment of the manipulator has no preceding position to which to refer, so the
endpoint of the manipulator i directed towards the target point T .

The RepairSelfIntersections operator.

This operator tries to untangle the manipulator if self-intersections are present.
First, a set of intersecting pairs of manipulator segments is identified:

I =
{

〈j, k〉 : JjJj+1 and JkJk+1 intersect
}

. (1)

Based on the set I the first and the last joint in the entangled part of the
manipulator are identified:

jf = min {j : ∃k : 〈j, k〉 ∈ I} + 1 , (2)

jl = max {k : ∃j : 〈j, k〉 ∈ I} . (3)

One index jfix is randomly selected from the range jf , . . . , jl with uniform
probability. The angle αjfix

is modified by setting αjfix
= ηαjfix

, where η is a
random number drawn from the U [0, 1] distribution. This makes the segment
Jjfix

Jjfix+1 closer to pointing straight with respect to the previous segment

Jjfix−1Jjfix
.

3.1 The Main Loop

The main algorithm loop is presented in Algorithm 1. This main loop of the
algorithm is executed for every time instant t = 0, . . . , Nt − 1. The population
P is initialized only once at the first time instant t = 0 before entering the main
loop. The parameters that affect the execution of the algorithm are: Ngen - the
number of generations, Npop - population size, Nrnd - the number of random
immigrants, Nf - the number of feasible specimens to select, and Ninf - number
of infeasible specimens to select.



Algorithm 1 The main algorithm loop.

for g = 1 → Ngen do

Poffspring = ∅
Pmate = SelectMatingPool(P )
for i = 1 → Npop/2 do

〈O1, O2〉 = Crossover(Pmate[2 ∗ i − 1], Pmate[2 ∗ i])
Mutate(O1); Mutate(O2)
MutateOneJoint(O1); MutateOneJoint(O2)
RepairSelfIntersections(O1); RepairSelfIntersections(O2)
Poffspring = Poffspring ∪ {O1, O2, }

end for

Prnd = InitPopulation(Nrnd)
RepairSelfIntersections(Prnd)
PU3 = Unfold-3(Poffspring) ∪ Unfold-3(Prnd)
Pav = AvoidObstacles(Poffspring)∪AvoidObstacles(Prnd)∪AvoidObstacles(PU3)
RepairSelfIntersections(Pav)
Evaluate(Poffspring ∪ Prnd ∪ PU3 ∪ Pav)
P = P ∪ Poffspring ∪ Prnd ∪ PU3 ∪ Pav

〈Pf , Pinf = Split(P )
Rank(Pf ); Rank(Pinf )
P = Pinf [1 : Ninf ] ∪ Pf [1 : Nf ]

end for

Apart from the operators described in the ”Operators” section the algorithm
uses the following procedures.

SelectMatingPool Selects a mating pool using a binary tournament.

Crossover Generates offspring by applying the crossover operator with prob-
ability Pcross to a pair of parents or by copying them as they are with probability
1 − Pcross.

InitPopulation Returns a given number of new specimens with randomly
initialized genotypes. It is used to initialize a new population at time t = 0 and
for generating random immigrants.

AvoidObstacles Modifies those candidate solutions that intersect obstacles.
Moves the solution outside the obstacle by adjusting the last angle before the
obstacle, so that the manipulator segment becomes tangent to an ε-envelope of
the obstacle.

Evaluate Calculates values of the f1, f2 and f3 objectives as well as the g1

and g2 constraints.

Split Splits the population to feasible and infeasible specimens (those having
g1 = 0 and g2 = 0 and those having g1 > 0 or g2 > 0 respectively).

Rank Ranks a set of specimens using nondominated sorting and then crowd-
ing distance sorting used in the NSGA-II algorithm [3]. The set of feasible spec-
imens Pf and the set of infeasible specimens Pinf are ranked separately.



4 Experiments and Results

The proposed algorithm was tested on four scenarios involving different obsta-
cle courses with different movement types and different number of manipulator
segments. In all tests the number of time instants was Nt = 100. The first
three scenarios involved manipulators with Ns = 10 segments while the last sce-
nario involved a manipulator with Ns = 100 segments. All the scenarios were
tested for the number of generations Ngen = 50, 100, 200 and population sizes
Npop = 50, 100, 200. For each pair of parameters 10 iterations were performed.
Visualizations of these scenarios are given in Figure 1.

”Zig-Zag 10” test at t = 90 ”Zig-Zag 100” test at t = 90

”Circular” test at t = 30 ”Diagonal” test at t = 45

Fig. 1. Obstacle courses used in the experiments

The parameters of the evolutionary algorithm were set as follows: crossover
probability Pcross = 0.9, crossover distribution index ηcross = 15, mutation
probability Pmut = 0.1, mutation distribution index ηmut = 20, percentage
of random immigrants Nrnd/Npop = 20%, percentage of infeasible solutions
Ninf/Npop = 20%. The effectiveness of the algorithm in keeping the manipu-
lator endpoint E close to the target point T was measured by calculating the
average Euclidean distance dE(E, T ) and the fraction q of time instants during
which dE(E, T ) < 0.5. In Table 1 the average Euclidean distance dE(E, T ) be-



tween the manipulator endpoint E and the target point T and the fraction q of
time instants during which dE(E, T ) < 0.5 are given.

Table 1. The average Euclidean distance dE(E, T ) between the manipulator endpoint
E and the target point T and the fraction q of time instants during which dE(E, T ) <
0.5 obtained in the tests

Circular
Npop = 50 Npop = 100 Npop = 200

dE(E, T ) q dE(E,T ) q dE(E, T ) q

Ngen

50 10.64 28.69% 10.55 27.44% 10.97 26%
100 9.43 34.46% 10.67 28.37% 9.74 32.09%
200 9.96 29.69% 9.32 33.15% 8.41 32.53%

Diagonal
Npop = 50 Npop = 100 Npop = 200

dE(E, T ) q dE(E,T ) q dE(E, T ) q

Ngen

50 5.47 57.76% 4.57 60.98% 4.33 62.02%
100 4.84 58.34% 4.50 61.16% 4.19 62.44%
200 4.88 56.44% 4.38 61.57% 4.23 61.55%

Zig-Zag 10
Npop = 50 Npop = 100 Npop = 200

dE(E, T ) q dE(E,T ) q dE(E, T ) q

Ngen

50 5.00 16.6% 3.95 28.59% 3.42 33.35%
100 4.44 24.93% 3.32 38.19% 2.61 48.14%
200 2.91 44.23% 2.94 41.94% 2.30 54.46%

Zig-Zag 100
Npop = 50 Npop = 100 Npop = 200

dE(E,T ) q dE(E, T ) q dE(E, T ) q

Ngen

50 4.40 24.53% 4.01 29.98% 3.04 38.87%
100 4.74 31.26% 2.87 42.84% 2.29 52.07%
200 3.12 44.30% 2.82 48.05% 1.78 61.03%

Comparison of values from Table 1 shows that the manipulator with 100
segments is handled effectively by the proposed algorithm. The average distance
from the target dE(E, T ) obtained for the ”Zig-Zag 100” test is very similar to
that obtained for the ”Zig-Zag 10” test. The fraction q of time instants during
which dE(E, T ) < 0.5 is higher for the ”Zig-Zag 100” test.

In two problems ”Circular” and ”Diagonal” it might be beneficial for the
algorithm to backtrack and ”go around” the obstacle. For these problems in-
creasing the values of the parameters (the population size Npop and the number
of generations Ngen) provides only a moderate improvement in solution quality.
This may suggest that the algorithm should include elements of planning. For
example it could be beneficial to optimize a sequence of moves for several time
instants, not just one movement at a time. Increasing the values of the Npop

and Ngen parameters improves the results significantly in the ”Zig-Zag 10” and
”Zig-Zag 100” tests which feature more obstacles and a narrower path to the



target. This effect may be caused by a large number of specimens required to
find a feasible movement in such crowded space.

5 Conclusions

In this paper a multiobjective dynamic constrained evolutionary algorithm was
proposed for control of a multi-segment articulated manipulator. The main ad-
vantage of the presented algorithm is that it does not require any tuning for the
manipulator parameters nor for any particular environment. The test with 100-
segment manipulator shows, that the algorithm is able to utilize the increased
maneuverability of this manipulator compared to the one with 10 segments. In
an environment with moving obstacles the algorithm managed to keep the end-
point of the 100-segment manipulator closer on average to the target point T
than in the case of the 10-segment one and for a larger fraction of time.

Further work may include an elaboration of a similar method for 3D space.
This would require, at the very least, defining the distance around an obstacle
in a way applicable to 3D and a modification of evaluation of constraint g1 (in-
tersections with obstacles). From the point of view of development of intelligent
methods it may be useful to employ AI planning which would allow going around
obstacles in directions opposite to where the target point is.

References

1. Aristidou, A., Lasenby, J.: Motion capture with constrained inverse kinematics for
real-time hand tracking. In: Proceedings of the IEEE International Symposium on
Communications, Control and Signal Processing (ISCCSP 20120). pp. 1–5 (2010)

2. Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space.
Complex Systems 9(2), 115–148 (1995)

3. Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6, 182–197 (2002)

4. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering
design. Computer Science and Informatics 26, 30–45 (1996)

5. Dong, H., et al.: Workspace density and inverse kinematics for planar serial revolute
manipulators. Mechanism and Machine Theory 70, 508–522 (2013)

6. Duindam, V., Xu, J., Alterovitz, R., Sastry, S., Goldberg, K.: Three-dimensional
motion planning algorithms for steerable needles using inverse kinematics. The
International Journal of Robotics Research 29(7), 789–800 (2010)

7. Grefenstette, J.: Genetic algorithms for changing environments. In: Parallel Prob-
lem Solving from Nature 2. pp. 137–144. Elsevier (1992)

8. Kallmann, M.: Analytical inverse kinematics with body posture control. Computer
Animation and Virtual Worlds 19(2), 79–91 (2008)

9. Pieper, D., L.: The kinematics of robots under computer control. Phd thesis, Stan-
ford University (1968)

10. Singh, H.K., Isaacs, A., Ray, T., Smith, W.: Infeasibility driven evolutionary al-
gorithm (IDEA) for engineering design optimization. In: Wobcke, W., Zhang, M.
(eds.) AI 2008: Advances in Artificial Intelligence, 21st Australasian Joint Con-
ference on Artificial Intelligence, Auckland, New Zealand, December 1-5, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5360, pp. 104–115 (2008)


