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Evolutionary algorithms are often employed to multiobjective optimization, because they process
an entire population of solutions which can be used as an approximation of the Pareto front of the
tackled problem. It is a common practice to couple local search with evolutionary algorithms, es-
pecially in the context of combinatorial optimization. In this paper a new local search method is
proposed that utilizes the knowledge concerning promising search directions. The proposed method
can be used as a general framework and combined with many methods of iterating over a neigh-
bourhood of an initial solution as well as various decomposition approaches. In the experiments the
proposed local search method was used with an evolutionary algorithm and tested on 2-, 3- and
4-objective versions of two well-known combinatorial optimization problems: the Travelling Salesman
Problem (TSP) and the Quadratic Assignment Problem (QAP). For comparison two well-known local
search methods, one based on Pareto dominance and the other based on decomposition, were used
with the same evolutionary algorithm. The results show that the evolutionary algorithm coupled with
the directional local search yields better results than the same evolutionary algorithm coupled with
any of the two reference methods on both the TSP and QAP problems.
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1. Introduction

Multiobjective optimization has been, for many years, a field of active study in which
researchers tackle theoretical as well as practical challenges. Without a loss of generality,
a multiobjective optimization problem can be defined as follows:

minimize F (x) = [f1(x), . . . , fm(x)]
subject to x ∈ Ω,

(1)

where:
Ω - the decision space,
m - the number of objectives.

Because there exist m different objectives it is usually not possible to choose one, the
best solution which minimizes all fj(x), j = 1, . . . ,m simultaneously. Similarly, it is not
always possible to determine which of any given two solutions is better than the other
one. Instead, a concept of Pareto domination [7, 27] is used to define a relation over a set
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of all possible solutions to the problem (1). For any two points x1, x2 ∈ Ω we say that x1
dominates x2 (x1 ≻ x2) if:

∀j ∈ {1, . . . ,m} : fj(x1) ≤ fj(x2)
∃j ∈ {1, . . . ,m} : fj(x1) < fj(x2)

(2)

A solution x ∈ Ω is nondominated (also called Pareto optimal) if:

¬∃x′ ∈ Ω : x′ ≻ x. (3)

The set of all nondominated solutions in the decision space Ω is called the Pareto set
and its image in objective space Rm is called the Pareto front.

Multiobjective optimization can be performed using a wide variety of optimization
methods. Among others, well-known methods such as the steepest descent [11] and tabu
search [14] have been adapted to multiobjective optimization. One of the proposed ap-
proaches to multiobjective optimization is also to use the simulated annealing method
in which the probability of making a transition from the current state to a new state
depends on the energies assigned to these states and on a global time-varying parameter
representing the temperature. In the paper [33] several criteria for the probability of
accepting the new solution are discussed. The paper [35] proposed a simulated annealing
algorithm PDMOSA using a Pareto-based fitness.

Evolutionary methods are often used to tackle multiobjective optimization problems,
because their population-based nature allows them to process in one run an entire set
of solutions, which approximate the true Pareto front. Evolutionary algorithms used for
multiobjective optimization often fall into one of the two categories: based on Pareto
dominance or based on decomposition. Algorithms from the former class use the rela-
tion (3) either directly for selection of specimens (e.g. NSGA [34] and NSGA-II [8]) or
for fitness assignment (e.g. SPEA [39] and SPEA2 [38]). Algorithms based on decompo-
sition transform the initial multiobjective problem into a set of scalar problems using
a decomposition procedure. For example, this approach is used in the Multiobjective
Evolutionary Algorithm Based on Decomposition (MOEA/D) algorithm [25, 37]. In one
of the simplest decomposition procedures scalar objectives are obtained by calculating
weighted sums of the initial objectives with various weight vectors.

Local Search in Evolutionary Optimization
It is a commonly used approach to augment an evolutionary algorithm (EA) with a lo-

cal search method, which is used to improve the solutions found by the EA. This practice
is very often used in the case of combinatorial optimization problems. Early attempts
at combining the local search with evolutionary optimization include the Genetic Local
Search method developed, among others, by Ishibuchi [16] and Jaszkiewicz [18] for multi-
objective optimization in such problems as the TSP and flowshop scheduling. Further
developments in the area of memetic algorithms include the Memetic Pareto Archived
Evolution Strategy (M-PAES) [24], which has been applied successfully to combinatorial
problems, for example to the multiobjective knapsack problem [23]. Memetic algorithms
have been applied to many optimization problems including the flowshop scheduling
problem [17], pick-up and delivery problems [28], the orienteering problem [12] and the
vehicle routing problem [32]. A survey by Knowles and Corne [22] apart from presenting
even more optimization problems to which memetic algorithms can be applied, discusses
various mechanisms used in these algorithms (such as dominance ranking, scalarization,
niching, etc.). It also describes performance measures used for assessing the quality of re-
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sults produced by optimization algorithms and discusses conditions under which various
mechanisms can improve the working of memetic algorithms.
In the case of multiobjective optimization a local search based on Pareto dominance

(PLS) is often used [2–4, 26, 29]. Pareto dominance can be used for replacing solutions
during the local search, but also for determining the areas in which an improvement
of solutions can be expected [15]. In this paper the Pareto Local Search is used as a
reference method to which the new local search method is compared. The PLS used
in this paper is a best-improvement search based on the neighborhood generated using
the 2-opt operator [5]. The neighbourhood generation using the 2-opt operator works as
follows. For a given permutation π the neighbourhood N(π) is generated by considering
all possible pairs of two different indices ⟨i, j⟩. For each given pair a new permutation
is generated by reversing the order of the elements with indices between i and j (in-
clusive). This operation may ”wrap around” the last element in the permutation when
j < i. Thus, applying the 2-opt operator to a permutation π = (π1, . . . , πk) for i < j
produces (π1, . . . , πi−1, πj , . . . , πi, πj+1, . . . , πk). For i > j the 2-opt operator produces
(. . . , πi, πj+1, . . . , πi−1, πj , . . . ). For example if π = (1, 2, 3, 4, 5, 6, 7, 8) the new permuta-
tion produced for i = 2 and j = 6 is π = (1, 6, 5, 4, 3, 2, 7, 8) and the new permutation
produced for i = 6 and j = 2 is π = (7, 6, 3, 4, 5, 2, 1, 8).
Another common approach to local search is to use objective aggregation similar to that

performed in the decomposition-based optimization algorithms such as the MOEA/D
[25, 37]. The aim of decomposition is to convert a multiobjective optimization problem
(1) into a set of scalar problems. One of the commonly used decomposition methods is
the weighted sum decomposition. This decomposition method uses a set of H weight vec-
tors

{
λ(i)
}
i∈{1,...,H}. Each of the vectors λ(i) satisfies the following conditions: λ(i)[j] ≥ 0

for all j ∈ {1, . . . ,m},
∑m

j=1 λ
(i)[j] = 1. The initial problem is decomposed into H scalar

subproblems associated with λ(i) vectors. In the i-th subproblem the scalar objective is
calculated as a weighted sum of the initial objectives fj(x), j = 1, . . . ,m with weights

equal to the elements of the corresponding weight vector λ(i). Other decomposition meth-
ods include the Tchebycheff decomposition and boundary-intersection decomposition [6].
The decomposition-based local search (DLS) maintains its own set of weight vectors

and thus it does not depend on whether the main evolutionary algorithm is decomposition
based. After each generation of the evolutionary algorithm the DLS is performed for each
of the specimens in the population as presented in Algorithm 1.
Note: in Algorithm 1 the · symbol denotes the dot product.

The N(x) denotes a problem-specific neighbourhood of a solution x. For example, in
this paper the neighbourhood search for the TSP and the QAP problems iterates over all
the solutions that can be generated from a given solution x using the 2-opt operator. The
Directional Local Search (DirLS) method proposed in this paper uses the DLS search
procedure to perform the search for a given specimen using a weight vector assigned by
the DirLS algorithm described later in the paper. Also, the DLS is used as a second
reference method to which the DirLS method is compared. In the reference DLS method
the weights are calculated based on the nadir point n∗ ∈ Rm that consists of the worst
values of the objective found during the search and the current position of the solutions
in the population.
For a specimen x(i) with the objectives vector

{
f1(x

(i)), . . . , fm(x(i))
}
the correspond-

ing weight vector λ(i) is calculated based on a vector of absolute differences between the
objective values and nadir point coordinates:

δ(i) = [|f1(x(i))− n∗
1|, . . . , |fm(x(i))− n∗

m|] . (4)
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Algorithm 1 The main loop of the decomposition-based local search.

IN:
x0 - a solution found by the evolutionary algorithm
F0 = F (x0) - a vector of the values of objectives for the solution x0
λ = (λ1, . . . , λm) - the weight vector associated with the solution x0

OUT:
x - an improved solution

x = x0
v = F0 · λ
do
vold = v
N = N(x)
foreach x′ ∈ N
F ′ = [f1(x

′), . . . , fm(x′)]
v′ = F ′ · λ
if v′ < v
x = x′

v = v′

endif
end foreach

while v < vold
return x

The weights are calculated by normalizing vectors δ(i):

λ(i) = δ(i)/

m∑
j=1

δ(i)[j] . (5)

Improved solutions found by a local search procedure are usually incorporated to the
population that undergoes evolution. In the case of Pareto-based evolutionary algorithms
the improved solutions replace specimens which they dominate. When a decomposition-
based evolutionary algorithm is used, the easiest way to perform the local search is to
search along the aggregated objectives using the same weight vectors as the original al-
gorithm. For example in a recent paper Ke et al. [20] use a single-objective local search
using the same weight vectors as the original algorithm and, additionally, a subpopulation
which undergoes the Pareto Local Search. The latter of these search procedures is, there-
fore, a well-known Pareto Local Search (PLS), while the former is a decomposition-based
local search (DLS) which does not adapt the weight vectors as the DirLS does.

The rest of this paper is structured as follows. In section 2 the directional local search
algorithm is presented. Section 3 describes the combinatorial problems used for tests.
In section 4 the experimental setup is outlined and the results are discussed. Section 5
concludes the paper.
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Figure 1. The concepts involved in the working of the Directional Local Search algorithm (Ndir = 4).

2. Directional Local Search

The Directional Local Search (DirLS) stores a list I of pairs ⟨pos, dir⟩, in which each
of the elements contains a direction (dir) in which the last improvement was obtained
during the local search phase at a given position (pos) on the Pareto front. This list is
updated during the local search phase after each generation of the evolutionary algorithm.
Information stored in the I list is used as follows during the local search phase. For each
specimen x, Ndir elements are found for which the pos value is the closest to the current
objectives F (x) of the specimen x. The dir vectors of these elements are averaged and
the resulting vector λx is used as the weights vector for a DLS procedure. The concepts
involved in the working of the Directional Local Search algorithm are presented in Figure
1.
The working of the Directional Local Search algorithm is presented in Algorithm 2. In

this algorithm the following procedures and functions are used:

InitPopulation - initializes a new population for the EA.

Evolve - performs an evolution of one generation of the EA. The implementation of
this procedure depends of the selected evolutionary algorithm.

UpdateNadirPoint - updates the nadir point based on the solutions found so far. In
the implementation presented in this paper the nadir point was calculated based on the
archive of all nondominated solutions found by the algorithm.

Rand - Returns a number drawn from a given probability distribution. In the algorithm
this function is used to draw a number from an uniform random distribution U[0,1].

GetNearestVectors - Returns Ndir vectors taken from dir elements of those elements
of the list I that have pos vectors closest to the given value F (x).

DLS - the Decomposition Local Search procedure presented in Algorithm 1.

In this paper the weighted sum decomposition and a neighbourhood search based on
the 2-opt operator were used. The proposed framework, however, can be used with many
other decomposition approaches and local search operators. Also, the working of the Di-
rectional Local Search does not rely heavily on the main evolutionary algorithm. It can
be used both with EAs based on Pareto dominance as well as EAs based on decomposi-
tion. Other metaheuristic optimization methods can be coupled with the proposed local
search method as well.
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Algorithm 2 An evolutionary algorithm combined with the Directional Local Search
algorithm.

Ngen - the number of generations of the EA
Npop - the population size

Ndir - the number of direction vectors used to calculate each weight vector λ(i)

I = ∅
P1 = InitPopulation()
for g = 1 → Ngen do
Pg+1 = Evolve(Pg)
n∗ = UpdateNadirPoint(Pg+1, n

∗)
for i = 1 → Npop do

maxi = max {xi : [x1, . . . , xm] ∈ Pg+1}
end for
for i = 1 → Npop do

x = Pg+1[i]
if ∃j : xj = maxj then

λ(i) = [0, . . . , 0]

λ
(i)
j = 1

else
Θ = |I|

Npop

if (|I| ≥ Ndir) and (Rand(U[0,1]) < Θ) then
{vi}i=1,...,Ndir

= GetNearestVectors(I, F (x), Ndir)

{λ(i)} =
v1,...,vNdir

Ndir

else
δ(i) = [|f1(x)− n∗

1|, . . . , |fm(x)− n∗
m|]

λ(i) = δ(i)/
∑m

i=1 δ
(i)[j]

end if
end if

end for
P ′
g+1 = ∅

for i = 1 → Npop do
x = Pg+1[i]

x′ = DLS(x, F (x), λ(i))
P ′
g+1 = P ′

g+1 ∪ {x′}
if ∀j ∈ {1, . . . ,m} : x′[j] < x[j] then

I ′ = I ′ ∪ {⟨F (x′), F (x′)− F (x)⟩}
end if

end for
Pg+1 = P ′

g+1

end for

6



October 18, 2015 Optimization Methods & Software paper˙04

3. Test Problems

The experiments were conducted on 2-, 3- and 4- objective versions of two well-known
combinatorial optimization problems: the Travelling Salesman Problem (TSP) and the
Quadratic Assignment Problem (QAP).

The Travelling Salesman Problem
The single objective Travelling Salesman Problem (TSP) is defined as follows [13]. For

a given n× n cost matrix C = [cij ], i, j ∈ {1, . . . , n}:

minimize f(p) = cp(n)p(1) +
∑n−1

i=1 cp(i)p(i+1)

subject to p ∈ Pn,
(6)

where:
Pn - the set of all permutations of numbers 1, . . . , n.

An m-objective TSP problem can be generated by calculating m objective functions
fj(p), j = 1, . . . ,m each using a different cost matrix Cj of size n × n. Biobjective
TSP instances were obtained by combining single objective TSP instances kroAnnn
and kroBnnn (where nnn = 100, . . . , 400). Because for nnn > 100 only two instances
kroAnnn and kroBnnn are available, the three- and four-dimensional test instances were
generated using the following technique. For every instance size n three permutations π2,
π3 and π4 of n elements were generated using an online random permutation generator
[19]. The first objective function f1(p) was calculated, using the equation (6), without
any additional permutation with the cost matrix taken from the instance kroAnnn. The
other objectives fj(p), j ≥ 2 were calculated by permuting the argument p with one of
the generated permutations, so fj(p) = f(πj(p)) for j ≥ 2, where f(p) was calculated
using the equation (6). Objective functions generated using this approach reach their
minima at different points in the search space (namely p0 = argmin(f(p)), π−1

2 (p0),
π−1
3 (p0), π

−1
4 (p0)), thus creating a Pareto optimization problem. The random generator

seeds used for calculating the permutations are presented in Table 1.

Table 1. Random generator seeds used for calculating the permutations used for calculating the objectives in a
3- and 4-objective TSP

Instance size Seeds
100 9063, 22071, 27073
150 5101, 2173, 4181
200 1191, 22211, 12221
300 15231, 25241, 5251
400 14271, 29273, 7052

The Quadratic Assignment Problem
The single objective Quadratic Assignment Problem (QAP) is defined as follows [31].

For a given n × n distance matrix D = [dij ], i, j ∈ {1, . . . , n} and a flow matrix F =
[fij ], i, j ∈ {1, . . . , n}:

minimize f(p) =
∑n

i=1

∑n
j=1 fijdp(i)p(j) +

∑n
i=1 bip(i)

subject to p ∈ Pn,
(7)

where:
Pn - the set of all permutations of numbers 1, . . . , n ,
bip(i) - a linear term that represents the cost of making the assignment according to

permutation p .
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The linear term bip(i) is omitted in some formulations of the problem. A multiobjec-
tive version of the QAP problem can be generated by using a different matrix for each
objective. A common practice is to use the same distance matrix D and m different
flow matrices Fj , j = 1, . . . ,m [21]. In this paper biobjective QAP instances with corre-
lated flow matrices introduced in [30] were used. The tests were performed on unstruc-
tured instances of size 25, 50 and 75 and with correlations between the flow matrices of
ρ ∈ {−0.75,−0.50,−0.25, 0.0, 0.25, 0.50, 0.75}. Similarly as with the TSP, permutation-
based objective functions were used for 3- and 4-objective test instances, in which the
flow matrix used for the first objective was taken from [30] and the remaining objectives
were calculated using permutations in the same manner as with the TSP. The random
generator seeds used for calculating the permutations are presented in Table 2.

Table 2. Random generator seeds used for calculating the permutations used for calculating the objectives in a
3- and 4-objective QAP

Instance size Seeds
25 13270, 21272, 15280
50 4099, 8101, 3109
75 3119, 2121, 27121

4. Experiments and Results

The experiments were aimed at comparing the performance of the Directional Local
Search (DirLS) with the Decomposition Local Search (DLS) presented in the Algorithm
1 and the Pareto Local Search (PLS). The Pareto Local Search was implemented similarly
as in the Algorithm 1, except a pareto dominance criterion was used for determining if
the solution has been improved. The NSGA-II algorithm [8] was used as the evolutionary
algorithm, based on which all three compared local search methods worked, because it is
currently one of the best performing evolutionary multiobjective optimization algorithms,
especially for combinatorial optimization. Solving of the test problems using the SPEA2
algorithm has also been attempted, but the results produced by the SPEA2 (with all the
local search methods) were much worse than those attained by the NSGA-II with DLS
and DirLS. The experiments were conducted on test problems described in Section 3.
The performance of both algorithms was measured using the hypervolume (HV) indicator
[40]. The hypervolume is the function of a set of points equal to the Lebesgue measure
of the portion of the objective space that is dominated by solutions in P collectively:

HV (P ) = L

(∪
x∈P

[f1(x), r1]× . . .× [fm(x), rm]

)
, (8)

where:
m - the dimensionality of the objective space,
fi(·), i = 1, . . .m - the objective functions,
R = (r1, . . . , rm) - a reference point,
L(·) - the Lebesgue measure on Rm.

In R2 and R3 the hypervolume is equal to the area and volume of the objective space
covered by the solutions in the set P , respectively. The higher the value of the hy-
pervolume indicator, the better the Pareto front and as shown in [10] maximizing the
hypervolume is equivalent to achieving Pareto optimality.
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Each test was repeated 30 times and the median values were calculated. Statistical
significance of the results was determined using the Wilcoxon test [9] with the null
hypothesis that the DirLS method gives the same median hypervolume value than a given
reference method. The Wilcoxon test for the equality of medians was chosen, because,
contrary to tests that compare means, it does not assume the normality of the distribution
of the tested measurements. Since the normality assumption is most often not satisfied
for the distribution of the measured hypervolume values, the Wilcoxon test is preferable
to tests such as the Student’s t-test. Because the comparison of the DirLS method is
made against a set of two other methods an adjusted p-value [1] was calculated as:

PADJ = 1− (1− PDLS)(1− PPLS) (9)

where PDLS and PPLS are p-values obtained for the test comparing DirLS to DLS and
DirLS to PLS, and PADJ is the adjusted p-value. The adjusted p-value gives the probabil-
ity of incorrectly rejecting the null hypothesis at least once in the set of two comparisons
performed (DirLS vs. DLS and DirLS vs. PLS). Therefore, if a low adjusted p-value
is obtained it indicates a high statistical significance of the conclusion that the DirLS
produces higher hypervolume values than both DLS and PLS.
The results of the experiments are summarized in Table 3 which presents for how many

test instances each algorithm has produced the highest median and for how many test
instances the DirLS has been significantly better than the two other algorithms.

Table 3. Summary of the results of the experiments (the number of test instances for which each algorithm has

produced the highest median and the number of test instances for which the DirLS has been significantly better
than the two other algorithms)

Problem
Number of Number of highest medians DirLS significantly better
instances DirLS DLS PLS α = 0.01 α = 0.05

2-objective TSP 7 7 0 0 7 7
3-objective TSP 5 5 0 0 5 5
4-objective TSP 5 5 0 0 5 5
2-objective QAP (n = 25) 7 6 0 1 5 6
2-objective QAP (n = 50) 7 7 0 0 6 6
2-objective QAP (n = 75) 7 7 0 0 6 6
3-objective QAP (n = 25) 7 7 0 0 7 7
3-objective QAP (n = 50) 7 7 0 0 7 7
3-objective QAP (n = 75) 7 7 0 0 7 7
4-objective QAP (n = 25) 7 7 0 0 7 7
4-objective QAP (n = 50) 7 7 0 0 7 7
4-objective QAP (n = 75) 7 7 0 0 7 7

Numerical values and graphs are presented in tables in section S.1 and in figures in
section S.2 in a supplemental file available online. In the tables median hypervolume
values are presented, along with p-values obtained in the Wilcoxon statistical test for the
equality of medians. The timings presented in the tables in secion S.1. of the supplemental
file were obtained on machines with a 2.4 GHz Intel Core 2 Quad Q6600 CPU and 4 GB
of RAM. In the case of QAP instances the local search has been performed on a GeForce
470 GTX graphics cards with 1.25 GB (1280 MB) of RAM. The amount of memory did
not seem, however, to play a significant role in the experiments as the maximum memory
allocation was far below the available maximum.

The Travelling Salesman Problem
Each test was run for 200 generations. The population size was equal to the number

of cities in each test problem. The inver-over operator [36] was used with the random
inverse rate 0.02. All three local search procedures were based on the 2-opt heuristic and
were implemented on a regular CPU.
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The values of the hypervolume obtained for the TSP are presented in Tables S.1.1-
S.1.3 and in Figures S.2.1-S.2.7 in a supplemental file available online. From the figures
it can be seen that DirLS and DLS behave similarly, while PLS produces much worse
results, which also improve more slowly than in the case of the other two algorithms. For
brevity of the presentation, graphs for 3 and 4 objectives (qualitatively similar to those
for 2 objectives) have been omitted. Values in the tables show that there is a statistically
significant difference between DirLS and DLS in favour of the DirLS which produced the
best results for all 2-, 3- and 4-objective TSP instances. As shown in Table S.1.4, the
running times of all three algorithms for the 2-objective TSP were similar, with DLS a
few percent faster, but clearly at the expense of the quality of the results. In the case of
3- and 4-objective TSP the DLS is much slower than DirLS, as shown in Tables S.1.5
and S.1.6 and this difference seems to increase with the increasing number of objectives.
The fastest method is the PLS, but this advantage seems to be negligible, because of the
much worse results produced by this method.

The Quadratic Assignment Problem
Each test was run for 200 generations. The population size was 100. The inver-over

operator [36] was used with the random inverse rate 0.02. All three local search proce-
dures were based on the 2-opt heuristic and were implemented on a many-core graphics
processor (GPU).

The results obtained for the QAP are presented in Tables S.1.7-§.1.9 (2-objective QAP),
S.1.11-S.1.13 (3-objective QAP) and S.1.15-S.1.17 (4-objective QAP) in a supplemental
file available online. In almost all cases the Directional Local Search (DirLS) attained
better hypervolume values than the Decomposition-Based Local Search (DLS) and the
Pareto Local Search (PLS). Only in one case the median hypervolume attained by the
DirLS method (2.971 · 1010) was lower than the median hypervolume attained by both
the DLS (3.070 · 1010) and the PLS (3.086 · 1010), that is for the biobjective QAP with
n = 25 and ρ = +0.75. Nevertheless, the maximum value of the hypervolume attained
in one of the runs of the DirLS (3.539 · 1010) was higher than those obtained by DLS
(3.486 · 1010) and PLS (3.494 · 1010). In most cases the difference in favour of the DirLS
method has a high statistical significance (adjusted p-value smaller than 0.01).
Running times of the algorithms (for Ngen = 200 generations) presented in Tables

S.1.10, S.1.14 and S.1.18 in a supplemental file available online are very similar. While
the fastest algorithm is usually the PLS, as with the TSP, it produces very poor results.
The DLS was never the fastest algorithm of the tested three.
Figures S.2.8-S.2.28 show that for the QAP the DirLS improves the results much

faster than the other two algorithms. A similar behaviour has been observed for larger
dimensionalities, but, similarly as with the TSP, graphs for 3 and 4 dimension have not
been included in order not to clutter the paper. The exception is the 2-objective QAP
with n = 25 and ρ = +0.75 (cf. Figure S.2.14), which corresponds to the results presented
in Table S.1.7.
Overall, the DirLS seems to improve the results much faster than the other two algo-

rithms in the case of the QAP. For the TSP the performance of the DirLS and DLS is
similar, with DirLS producing slightly better results for the 2-objective TSP and about
15-20% better results in the case of 4-objective TSP. The PLS produced the worst results
in all the tests, except for the 2-objective QAP with n = 25 and ρ = +0.75.

The influence of the correlation between flow matrices on the quality of
solutions of the biobjective QAP problem
In [30] QAP instances were introduced in which there is a varying level of cor-

relation between flow matrices. The same paper suggests that the level of correla-
tion between flow matrices may influence the quality of results of the biobjective op-
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timization. The results obtained in the experiments involving the DirLS, DLS and
PLS were compared for different levels of correlation between flow matrices ρ ∈
{−0.75,−0.50,−0.25, 0,+0.25,+0.50,+0.75}. The results are summarized in Figures 2-4
which contain graphs presenting the hypervolume attained versus the correlation between
flow matrices.
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Figure 2. The attained median hypervolume versus

the correlation between flow matrices for 2-objective
QAP problems of size 25.
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Figure 3. The attained median hypervolume versus

the correlation between flow matrices for 2-objective
QAP problems of size 50.
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Figure 4. The attained median hypervolume versus
the correlation between flow matrices for 2-objective

QAP problems of size 75.

From the plotted data it can be concluded that for the instances with a high positive
correlation between flow matrices it is harder to attain high hypervolume values. The
Directional Local Search method produces better results in most cases, but the results
given by all three methods deteriorate with the increasing correlation value. Since the
correlation is measured between two flow matrices, the discussion about the influence of
the correlation between flow matrices on the quality of solutions concerns a biobjective
case only.

11



October 18, 2015 Optimization Methods & Software paper˙04

5. Conclusion

In this paper a Directional Local Search (DirLS) was presented that utilizes the knowl-
edge concerning promising search directions. The proposed method was compared to
two alternative approaches: one based on Pareto dominance (PLS) and the other based
on decomposition (DLS). The experiments were carried out on 2-, 3- and 4-objective
versions of two well-known combinatorial problems: the Travelling Salesman Problem
(TSP) and the Quadratic Assignment Problem (QAP). The quality of solutions found
by the compared methods was measured using the hypervolume indicator. The results
obtained in the experiments prove that the DirLS method is more effective than the
other two local search methods on both tested problems. In most cases it was the DirLS
that produced the best results, and the analysis of the attained hypervolume versus the
running time shows that DirLS produces better results than the two other approaches
in the same computation time.
Further work may include combining search algorithms other than the 2-opt local

search with the proposed framework. Also, it may be beneficial to use other decomposition
methods, such as the Tchebycheff or boundary-intersection decomposition. The proposed
method does not rely heavily on the working of the main metaheuristic algorithm so it
may be used with other multiobjective optimization approaches as well.
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