Selecting Best Investment Opportunities from Stock Portfolios Optimized by a Multiobjective Evolutionary Algorithm

Krzysztof Michalak
Department of Information Technologies, Institute of Business Informatics, Wroclaw University of Economics, Wroclaw, Poland
krzysztof.michalak@ue.wroc.pl
Presentation Plan

- Introduction
- Construction and evaluation of portfolios
- Multiobjective optimization of portfolios
- Clustering of optimized portfolios
- Analysis of portfolio behaviour
- Portfolio selection strategies
- Experiments and results
- Conclusion & further work
Introduction

- Scenario
 - We want to invest a given sum of money
 - Here we consider investments (timeframe: days, months) as opposed to trading (timeframe: sometimes as short as (milli)seconds)
 - We are interested in achieving high return
 - Investments are not without risk
 - Note: higher returns often entail higher risk
Introduction

- Goal: maximize return, minimize risk

- How to do this: choose your assets wisely... but that’s far from trivial

- Constructing portfolios of assets helps
 - we do not put all eggs in one basket
 - anticorrelations mitigate the risk (but lower the return)

- Approaches
 - maximize return for an acceptable level of risk
 - find Pareto-optimal trade-offs
Goal: maximize return, minimize risk

How to do this: choose your assets wisely... but that’s far from trivial

Constructing portfolios of assets helps
- we do not put all eggs in one basket
- anticorrelations mitigate the risk (but

Approaches
- maximize return for an acceptable level
- find Pareto-optimal trade-offs

how to select a particular portfolio from the Pareto front?

A number N_s of stocks are available

A portfolio = a vector $\mathbf{w} \in \mathbb{R}^{N_s}$

- each coordinate w_i is a “weight” of i-th stock
- we require that:

$$\sum_{i=1}^{N_s} w_i = 1$$
Construction and evaluation of portfolios

The entire portfolio is an asset for which we can calculate a quotation at time t:

$$p(t) = \sum_{i=1}^{N_s} w_i q_i(t)$$

where:

$q_i(t)$ - quotation of i-th stock at time t.

Then the resolution of quotations of the portfolio would be the same as the resolution of stock quotations (e.g. daily or minute).
Construction and evaluation of portfolios

In this paper we try to:

- get some information from minute quotations
- apply it for long-time investment
- we want to know what happens when we buy on a day d_1 and sell on a day d_2
- let R_{d_1,d_2} be a set of all possible returns that could be obtained if buying stocks in portfolio ν on a day d_1 and selling on a day d_2:

$$R_{d_1,d_2} = \left\{ \frac{\sum_{i=1}^{Ns} \omega_i m_i(t_2)}{\sum_{i=1}^{Ns} \omega_i m_i(t_1)} : t_1 \in d_1 \land t_2 \in d_2 \right\}$$
Construction and evaluation of portfolios

Returns that are elements of the set R_{d_1, d_2}

Based on a chart from: http://finance.yahoo.com/echarts?s=AAL
Construction and evaluation of portfolios

Based on the elements of the set R_{d_1,d_2} we can calculate:

- average return
- variance
- semi-variance - a variance calculated over these elements of the set R_{d_1,d_2} that are below the mean
- Sharpe’s ratio – measures how well a given investment pays off for the risk taken

$$S = \frac{E[R_a - R_b]}{\sqrt{\text{var}[R_a - R_b]}}$$
Optimization of portfolios

- Assume, that we want to invest for \(f \) days, for a period \([d_0, d_0 + f - 1]\).

- We optimize portfolios on historical data on the interval \([d_0 - h, d_0 - 1]\), \(h \) days in the past.

We perform a multiobjective optimization w.r.t the objectives:

- the average return
- one of the risk measures
Optimization of portfolios

- NSGA-II was used in this paper
 - it uses non-dominated sorting and binary tournament selection
 - it works well with problems in which the objectives have disproportionate scales
 - Operators: SBX and polynomial mutation
 - Repair procedure to ensure that weights sum to 1
- We get a population of portfolios approximating the PF
Clustering of portfolios

- Clustering of the solutions in the objective space
- $N_c = 10$ clusters
- Average Linkage Method (ALM)
Analysis of portfolio behaviour

- We can order the clusters w.r.t. the increasing average return
Analysis of portfolio behaviour

- **Question**: is the order of the clusters the same on future data?
- Can we expect a close correspondence?
Analysis of portfolio behaviour

- **Question:** is the order of the clusters the same on future data?
- **Or no correspondence at all?**
Analysis of portfolio behaviour

- Actual observations

Portfolios with high return (but also high risk) on historical data, earn well in the future ...

... but so do those with low return (but also low risk) on historical data

- From the graph we see, that selecting a portfolio properly is not trivial
Portfolio selection strategies

Several strategies of selecting the best portfolio have been proposed and tested in this paper:

- **C-RET** - The centroid is taken from the cluster in which the past returns are highest on average.
- **C-RISK** - The centroid is taken from the cluster in which the past risk measure is lowest on average.
- **IDX** – Decision based on how a stock market index behaved in the last g days:
 - increased \Rightarrow the centroid is taken from the cluster with the highest average past returns
 - decreased \Rightarrow the centroid is taken from the cluster with the lowest average risk measure
- **S-RET** - The portfolio which has shown the highest return on historical data interval is chosen.
Experiments

- **Data set**
 - Minute quotations of 200 stocks from NYSE
 - Time interval: from 2012.07.02 to 2014.10.17
 - 578 trading days (120 weeks)
 - 224,739 minute quotations were recorded for each stock

- **Two different lengths of the investment period**
 - \(f = 30 \) and 60 trading days

- **Six different lengths of the optimization period**
 - \(h = 30, 60, 90, 120, 150 \) and 180 trading days
Experiments

- Evolutionary algorithm parameters
 - population size $N_{pop} = 500$
 - number of generations $N_{gen} = 50$
 - distribution index parameter $\eta = 20$ for both the crossover and the mutation
Experiments

- Simulated investments
 - start at day 181 in the data set (to accommodate $h = 180$)
 - optimize portfolios on historical data
 - select the best portfolio using the tested strategy
 - buy the assets, wait $f = 30$ or 60 days, and sell
 - reinvest immediately

\[d_0 - h \quad d_0 - g \quad d_0 - 1 \quad d_0 \quad d_0 + f - 1 \]

- observe index behaviour
- optimize portfolios
- invest
- buy
- sell
Results

- Detailed results are presented in the paper
- Summary of the results

The best returns obtained for the tested risk measures and for investment interval length of $f = 30$ and 60 trading days:

<table>
<thead>
<tr>
<th>Risk measure</th>
<th>Return</th>
<th>Strategy</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = 30$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>1.1139</td>
<td>IDX ($g = 30$)</td>
<td>90</td>
</tr>
<tr>
<td>Semi-variance</td>
<td>1.1271</td>
<td>C-RISK</td>
<td>90</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>1.1082</td>
<td>IDX ($g = 30$)</td>
<td>30</td>
</tr>
<tr>
<td>$f = 60$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>1.2150</td>
<td>IDX ($g = 30$)</td>
<td>120</td>
</tr>
<tr>
<td>Semi-variance</td>
<td>1.2241</td>
<td>IDX ($g = 30$)</td>
<td>60</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>1.2106</td>
<td>IDX ($g = 30$)</td>
<td>60</td>
</tr>
</tbody>
</table>

The total number of times each strategy produced the highest return.
Conclusion

- Past performance of portfolios is useful, but not in a straightforward way.

- When the behaviour of portfolios located in various parts of the Pareto front is analyzed two distinct patterns can be found:
 - High return, high risk on historical data \Rightarrow high return in the future.
 - Low return, low risk on historical data \Rightarrow high return in the future.

- Based on these observations several investment strategies were proposed and tested.
Conclusion

- The best-performing strategy is based on how a stock market index behaved in the last g days
 - increased \Rightarrow the centroid is taken from the cluster with the highest average past returns
 - decreased \Rightarrow the centroid is taken from the cluster with the lowest average risk measure
Further work

- Develop adaptive strategies

- Use risk also as a goal
 - other risk measures
 - on what period to measure

- Constrained optimization (e.g. cardinality constraints)

- Optimization of trading rules
 - lower cardinality of the PF
Thank you!
(questions?)