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Introduction

� Scenario

� We want to invest a given sum of money

� Here we consider investments (timeframe: days, months) 
as opposed to trading (timeframe: sometimes as short as 
(milli)seconds)

� We are interested in achieving high return

� Investments are not without risk

� Note: higher returns often entail higher risk
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Introduction

� Goal: maximize return, minimize risk

� How to do this: choose your assets wisely… but 
that’s far from trivial

� Constructing portfolios of assets helps� Constructing portfolios of assets helps

� we do not put all eggs in one basket

� anticorrelations mitigate the risk (but lower the return)

� Approaches

� maximize return for an acceptable level of risk

� find Pareto-optimal trade-offs
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Construction and evaluation of portfolios

� A number Ns of stocks are available

� A portfolio = a vector w∈RNs

� each coordinate wi is a „weight” of i -th stock

� we require that:
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Construction and evaluation of portfolios

� The entire portfolio is an asset for which we can
calculate a quotation at time t :

where:where:

qi (t) - quotation of i - th stock at time t.

� Then the resolution of quotations of the portfolio
would be the same as the resolution of stock
quotations (e.g. daily or minute)
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Construction and evaluation of portfolios

� In this paper we try to:

� get some information from minute quotations

� apply it for long-time investment

� we want to know what happens when we buy on a day d1

and sell on a day d2and sell on a day d2

� let Rd1,d2
be a set of all possible returns that could be 

obtained if buying stocks in portfolio w on a day d1 and 
selling on a day d2 :
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Construction and evaluation of portfolios

t1 t'1 t‘2 t2

Returns that are
elements of the
set R

Based on a chart from: http://finance.yahoo.com/echarts?s=AAL
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Construction and evaluation of portfolios

� Based on the elements of the set Rd1,d2
we can

calculate:

� average return

� variance

semi-variance - a variance calculated over these elements� semi-variance - a variance calculated over these elements
of the set Rd1,d2

that are below the mean

� Sharpe’s ratio – measures, how well a given investment 
pays off for the risk taken
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Optimization of portfolios

� Assume, that we want to invest for f days, for a period 
[d0 , d0 + f – 1]

� We optimize portfolios on historical data on the interval
[d0 – h , d0 – 1], h days in the past

investoptimize portfolios

� We perform a multiobjective optimization w.r.t the
objectives:

� the average return

� one of the risk measures 11

d0 d0  + f  - 1

buy sell

d0 - 1d0 - gd0 - h

investoptimize portfolios



Optimization of portfolios

� NSGA-II was used in this paper

� it uses non-dominated sorting and binary tournament selection

� it works well with problems in which the objectives have 
disproportionate scales

� Operators: SBX and polynomial mutation

� Repair procedure to ensure that weights sum to 1

� We get a population of portfolios approximating the PF
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Clustering of portfolios

� Clustering of the solutions in the objective space

� Nc = 10 clusters

� Average Linkage Method (ALM)
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Analysis of portfolio behaviour

� We can order the clusters w.r.t. the increasing
average return
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Analysis of portfolio behaviour

� Question: is the order of the clusters the same on 
future data?

� Can we expect a close correspondence?
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Analysis of portfolio behaviour

� Question: is the order of the clusters the same on 
future data?

� Or no correspondence at all?
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Analysis of portfolio behaviour

� Actual observations Portfolios with high 
return (but also high 
risk) on historical
data, earn well in the
future …

… but so do those
with low return (but 

� From the graph we see, that selecting a portfolio properly is
not trivial
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Portfolio selection strategies

Several strategies of selecting the best porfolio have been
proposed and tested in this paper

� C-RET - The centroid is taken from the cluster in which the 
past returns are highest on average

� C-RISK - The centroid is taken from the cluster in which the 
past risk measure is lowest on averagepast risk measure is lowest on average

� IDX – Decision based on how a stock market index behaved in
the last g days

� increased ⇒ the centroid is taken from the cluster with the highest
average past returns

� decreased ⇒ the centroid is taken from the cluster with the lowest
average risk measure

� S-RET - The portfolio which has shown the highest return on 
historical data interval is chosen.
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Experiments

� Data set

� Minute quotations of 200 stocks from NYSE

� Time interval: from 2012.07.02 to 2014.10.17

� 578 trading days (120 weeks)

� 224,739 minute quotations were recorded for each stock� 224,739 minute quotations were recorded for each stock

� Two different lengths of the investment period

f = 30 and 60 trading days

� Six different lengths of the optimization period

h = 30, 60, 90, 120, 150 and 180 trading days
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Experiments

� Evolutionary algorithm parameters

� population size Npop = 500

� number of generations Ngen = 50

� distribution index parameter η = 20 for both the
crossover and the mutationcrossover and the mutation
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Experiments

� Simulated investments

� start at day 181 in the data set (to accommodate h = 180)

� optimize portfolios on historical data

� select the best portfolio using the tested strategy

� buy the assets, wait f = 30 or 60 days, and sell� buy the assets, wait f = 30 or 60 days, and sell

� reinvest immediately
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Results

� Detailed results are presented in the paper

� Summary of the results
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Conclusion

� Past performance of porfolios is useful, but not in a 
straightforward way

� When the behaviour of portfolios located in various
parts of the Pareto front is analyzed two distinct 
patterns can be foundpatterns can be found

� high return, high risk on historical data ⇒ high return in
the future

� low return, low rist on historical data ⇒ high return in the
future

� Based on these observations several investment 
strategies were proposed and tested
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Conclusion

� The best-performing strategy is based on how a 
stock market index behaved in the last g days

� increased ⇒ the centroid is taken from the cluster with
the highest average past returns

� decreased ⇒ the centroid is taken from the cluster with
the lowest average risk measurethe lowest average risk measure
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Further work

� Develop adaptive strategies

� Use risk also as a goal

� other risk measures

� on what period to measure

� Constrained optimization (e.g. cardinality
constraints)

� Optimization of trading rules

� lower cardinality of the PF
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Thank you!Thank you!

(questions?)
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