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Abstract. In the firefighter problem the spread of fire is modelled on an
undirected graph. The goal is to find such an assignment of firefighters
to the nodes of the graph that they save as large part of the graph as
possible.
In this paper a multi-objective version of the firefighter problem is pro-
posed and solved using an evolutionary algorithm. Two different auto-
adaptation mechanisms are used for genetic operators selection and the
effectiveness of various crossover and mutation operators is studied.
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1 Introduction

The firefighter problem was introduced by Hartnell in 1995 [14]. It can be used
as a deterministic, discrete-time model for studying the spread and containment
of fire, containment of floods and the dynamics of the spread of diseases.

The problem definition is as follows. Let G = 〈V, E〉 be an undirected graph,
and L = {′B′,′D′,′ U ′} a set of labels that can be assigned to the vertices of
the graph G. The meaning of the labels is ′B′ = burning, ′D′ = defended and
′U ′ = untouched. Let l : V → L be a function that labels the vertices. Initially,
all the vertices in V are marked ′U ′ (untouched). At the initial time step t = 0
a fire breaks out at a non-empty set of vertices ∅ 6= S ⊂ V . The vertices from
the set S are labelled ′B′: ∀v ∈ S : l(v) =′ B′. At every following time step
t = 1, 2, . . . a predefined number d of yet untouched nodes (labelled ′U ′) become
defended by firefighters (these nodes are labelled ′D′). A node, once marked
′D′, remains protected until the end of the simulation. Each time step finishes
with the fire spreading from the nodes labelled ′B′ to all the neighbouring nodes
labelled ′U ′. The simulation ends when either the fire is contained (i.e. there are
no undefended nodes to which the fire can get) or when all the undefended nodes
are burning. The goal is to find an assignment of firefighters to d nodes per each



time step t = 1, 2, . . . , such that, when the simulation stops, the number of saved
vertices (labelled ′D′ or ′U ′) is maximal.

In this paper a multi-objective version of the firefighter problem is tackled
in which there are m values vi(v), i = 1, . . . , m assigned to each node v in the
graph. Each vi value can be interpreted as a worth of a node with respect to a
different criterion (e.g. the financial worth vs. the cultural value). The objectives
fi, i = 1, . . . , m attained by a given solution are calculated as follows:

fi =
∑

v∈V :l(v)6=′B′
vi(v) (1)

where:
vi(v) is the value of a given node according to the i-th criterion.

Many papers published to date on the firefighter problem deal with theoret-
ical properties and concern specific types of graphs and specific problem cases.
Obviously, such results are not applicable in the general case when specific as-
sumptions may not be guaranteed to be true. In the paper [8] a linear integer
programming model was proposed, however it was only a single-objective one. To
date, few papers have been published on using metaheuristic methods for solving
the firefighter problem. A recent paper [4] states even, that before its publication
not a single metaheuristic approach has been applied to the firefighter problem.
In the aforementioned paper an Ant Colony Optimization (ACO) approach was
proposed for a single-objective case. In this paper a multi-objective evolutionary
algorithm with operator auto-adaptation is used.

The rest of this paper is structured as follows. Section 2 presents the al-
gorithm used for solving the multi-objective firefighter problem. In Section 3
the experimental setup is presented along with the obtained results. Section 4
concludes the paper.

2 Algorithm

Evolutionary algorithms are often used for multi-objective optimization. The
advantage of this type of optimization methods is that they maintain an entire
population of solutions which may represent various trade-offs between the objec-
tives. Since the problem presented in this paper is multi-objective the NSGA-II
algorithm [7] is used which is used in the literature in many areas including engi-
neering applications [13] and operations research [18]. The optimization problem
considered in this paper involves m objectives which represent the value of the
graph nodes with respect to different criteria. In the algorithm an m + 1-th ob-
jective is added which represents the number of nodes saved (i.e. labelled either
’D’ or ’U’ at the end of the simulation). This objective is added in order to
promote solutions that allow the fire to be contained early.

The genotype used in the algorithm is a permutation P of Nv elements. This
permutation represents the order in which nodes of the graph are defended by
firefighters. During the simulation of the spreading of fire firefighters are assigned



to d nodes of the graph at the time in the order determined by the permutation
P . If a given node is already labelled ′B′ then a firefighter is assigned to the
next untouched node from the permutation P . At a given time step d firefighters
are always assigned, even if some nodes are skipped because they are already
marked ′B′.

Genetic operators: A set of 10 crossover operators and 5 mutation opera-
tors is used for genetic operations. The crossover operators are: Cycle Crossover
(CX) [17], Linear Order Crossover (LOX) [9], Merging Crossover (MOX) [1, 16],
Non-Wrapping Order Crossover (NWOX) [6], Order Based Crossover (OBX)
[19], Order Crossover (OX) [11], Position Based Crossover (PBX) [19], Partially
Mapped Crossover (PMX) [12], Precedence Preservative Crossover (PPX) [3, 2]
and Uniform Partially Mapped Crossover (UPMX) [5]. The mutation operators
are: displacement mutation, insertion mutation, inversion mutation, scramble
mutation and transpose mutation.

Auto-adaptation mechanism: The effectiveness of genetic operators may
vary for different problems, different instances of a given problem and even may
change at different phases of the optimization process. In order to choose the best
performing crossover and mutation operators an auto-adaptation mechanism can
be used [15]. In this paper two auto-adaptation mechanisms are compared. The
first mechanism (RawScore) uses a raw score calculated as the number of times
bi when a given operator produced an improved specimen. Note, that in the case
of the crossover operator each offspring is compared to each parent, so if one
offspring is better than both parents then bi = 2 and if both offspring are better
than both parents then bi = 4. Also, in the case of a multi-objective problem an
improvement along any of the objectives is counted.

The second mechanism (SuccessRate) is based on the success rate of the
operators. This mechanism counts the number of times each operator was used
ni and the number of improvements obtained bi. Similarly as with the first
mechanism each offspring is compared to each parent, so a maximum value
of bi = 4 can be obtained (per objective). The success rate is calculated as
si = bi/ni if ni 6= 0 or si = 0 if ni = 0.

Each of the Nop operators is given a minimum probability Pmin and the re-
maining 1−NopPmin is divided proportionally to either the raw scores bi (in the
RawScore method) or the success rate values si (in the SuccessRate method)
obtained by the operators. In both methods operators are selected randomly
using a roulette-wheel selection principle. The selection of crossover and mu-
tation operators is performed separately with separate probability assignment
procedures.

3 Experiments and Results

In the experiments the optimization of firefighter assignment was performed for
graphs with various density of edges. The graphs were built as follows. First, a
number Nv of vertices were created. Then, edges were added with a probability
Pedge of creating an edge between any given two vertices. The density of the



graph heavily impacts the progress of the simulation. If the density is low the
fire is easily contained. If the density is high the fire is very hard to contain and
all nodes burn except those protected by firefighters (no nodes with the label ’U’
at the end of simulation). Therefore, the value of Pedge was selected based on a
preliminary round of tests in order to ensure that on one hand some of the nodes
are left in the untouched state ’U’ and on the other hand the fire is not stopped
immediately. The number of vertices Ns at which the fire started was set to 1,
0.04 ·Nv and 0.1 ·Nv. The number of firefighters Nf assigned at each time step
was set to Nf = 2 · Ns. The parameters of the test instances are presented in
Table 1.

Table 1. Parameters of the test instances

Nv Pedge Ns

50 0.05 1, 2 and 5
100 0.02 1, 4 and 10
500 0.0055 1, 20 and 50

1000 0.0025 1, 40 and 100

The parameters of the evolutionary algorithm were set as follows in the ex-
periments. The number of generations was set to Ngen = 250. In order to allow
larger populations for larger problem instances the population size was set to
be equal to the number of the nodes in the graph Npop = Nv. Specimens for
a new generation were generated by applying a crossover operator and then
mutation operator. The number of new specimens generated by the crossover
operator was equal to the population size Npop and the probability of mutation
was set to Pmut = 0.05. The minimum probability of selecting a particular op-
erator in the auto-adaptation mechanism was set to Pmin = 0.02 for crossover
auto-adaptation and to Pmin = 0.05 for mutation auto-adaptation.

The auto-adaptation mechanism changes the probabilities with which in-
dividual operators are selected. At various stages of the optimization process
different operators may be used more often than others. An example of this ef-
fect is visible in Figure 1 which presents the success rates of crossover operators
plotted against the generation number for the instance with Nv = 1000 ver-
tices and Ns = 100 fire starting points. Clearly, around generation 40 the MOX
crossover works best followed closely by the PPX. Near the end of the search
the OBX and PBX crossovers work best.

The results of multi-objective optimization performed using different algo-
rithms are often hard to compare because individual solutions may dominate
one another with respect to different objectives. In order to obtain numeric
values that represent the quality of the generated results various measures of
the Pareto front quality are used. Hypervolume indicator introduced in [20] is
very often used for that purpose. It has been proven in [10] that maximizing
the hypervolume is equivalent to achieving Pareto optimality. Table 2 presents
the hypervolume values obtained in the experiments for both auto-adaptation
methods. The presented values are averages calculated from 10 runs of the test
performed for each set of parameters.
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Fig. 1. The success rates of crossover operators plotted against the generation number
for the instance with Nv = 1000 vertices and Ns = 100 fire starting points

Table 2. Hypervolume values attained by both auto-adaptation methods

Nv Pedge Ns RawScore SuccessRate
auto-adaptation auto-adaptation

50 0.05
1 4.6143 · 106 5.2143 · 106

2 5.5699 · 107 5.6312 · 107

5 5.2817 · 107 5.4063 · 107

100 0.02
1 4.6310 · 108 7.2057 · 108

4 4.5708 · 108 5.2746 · 108

10 3.9548 · 108 5.1009 · 108

500 0.0055
1 2.0798 · 107 2.1406 · 107

20 3.3457 · 109 3.5775 · 109

50 1.1501 · 1010 0.9089 · 1010

1000 0.0025
1 1.0167 · 108 1.0016 · 108

40 2.7972 · 1010 2.6013 · 1010

100 1.1303 · 1011 1.0949 · 1011

In the experiments using the auto-adaptation based on the raw score the
scores bi were recorded for each operator i = 1, . . . , Nop separately for crossover
and mutation operators. Recorded scores are presented in Tables 3 and 4. Among
the crossover operators the CX crossover seems to work best as it has obtained
the highest score most often. However, other crossover operators also produced
good results on some instances. In the case of mutation operators the insertion
mutation clearly performs best.

In the experiments using the auto-adaptation based on the success rate the
success rates si were recorded for each operator i = 1, . . . , Nop separately for
crossover and mutation operators. Recorded success rates are presented in Tables
5 and 6. Similarly as with the first auto-adaptation method the CX crossover
achieves high success rates on some instances. Also, the OBX and PBX crossover
operators seem to work well. Again, the insertion mutation achieves the best
success rate outperforming, on average, all the other mutation operators.



Table 3. Scores obtained by crossover operators in the case of the auto-adaptation
method based on raw scores

Nv Pedge Ns CX LOX MOX NWOX OBX OX PBX PMX PPX UPMX

50 0.05
1 339.7 172.9 312.5 210.7 272.7 148.0 182.6 167.9 140.4 231.3
2 703.9 232.9 159.5 252.4 210.5 121.5 126.7 340.6 335.0 326.6
5 197.9 120.6 598.7 227.2 215.6 270.1 205.8 112.2 149.5 93.6

100 0.02
1 770.7 314.1 269.7 532.3 248.8 106.4 609.1 475.4 447.0 258.8
4 1112.6 949.7 1107.3 1440.8 1160.9 458.6 871.5 801.8 643.8 449.1

10 917.8 1361.1 605.0 828.8 620.6 263.2 1084.6 1267.2 847.1 392.4

500 0.0055
1 4905.4 2907.4 4662.4 3410.5 6970.6 1293.1 8531.8 3733.0 8706.2 4891.3

20 20910.5 12966.6 25450.5 15624.4 17796.1 1330.2 29291.9 7203.9 24431.8 2608.8
50 28899.5 15642.5 14174.3 15757.6 26394.8 2181.3 22251.9 6649.2 11675.2 1408.3

1000 0.0025
1 12264.4 7023.0 9990.5 5643.3 17829.5 2150.1 17231.3 8418.1 20872.6 8802.2

40 60152.2 38021.3 36766.7 47273.8 44378.3 3968.4 47085.1 15657.3 58720.6 2654.3
100 65961.7 33573.6 37139.4 41497.6 59235.0 2671.5 61871.8 15297.6 33518.0 2224.6

AVERAGE 16428.0 9440.5 10936.4 11058.3 14611.1 1246.9 15778.7 5010.4 13373.9 2028.4

Table 4. Scores obtained by mutation operators in the case of the auto-adaptation
method based on raw scores

Nv Pedge Ns displacement insertion inversion scramble transpose

50 0.05
1 16.6 8.7 8.1 8.4 2.3
2 6.3 18.6 3.8 10.8 5.8
5 10.1 8.0 4.1 3.1 5.0

100 0.02
1 16.3 6.1 22.7 15.3 3.8
4 17.3 25.3 13.8 26.6 9.9

10 26.5 23.7 12.3 26.5 10.4

500 0.0055
1 113.7 5.8 111.0 86.8 3.4

20 121.1 401.7 63.5 62.8 163.9
50 80.3 581.1 25.8 63.8 124.9

1000 0.0025
1 132.1 6.6 113.8 162.1 3.5

40 402.8 1107.6 112.5 176.3 353.0
100 243.2 1165.5 53.0 138.7 339.6

AVERAGE 98.9 279.9 45.4 65.1 85.5

Table 5. Success rates of the crossover operators generated by the auto-adaptation
method based on success rates

Nv Pedge Ns CX LOX MOX NWOX OBX OX PBX PMX PPX UPMX

50 0.05
1 0.356 0.329 0.346 0.341 0.411 0.251 0.424 0.331 0.347 0.338
2 0.434 0.422 0.425 0.394 0.432 0.312 0.433 0.409 0.456 0.359
5 0.395 0.330 0.336 0.343 0.356 0.280 0.357 0.318 0.331 0.278

100 0.02
1 0.380 0.325 0.366 0.353 0.396 0.190 0.386 0.292 0.390 0.323
4 0.797 0.718 0.640 0.720 0.696 0.348 0.697 0.644 0.648 0.444

10 0.865 0.802 0.730 0.787 0.743 0.342 0.756 0.706 0.753 0.461

500 0.0055
1 0.795 0.713 0.839 0.713 1.076 0.305 1.068 0.648 1.015 1.016

20 2.601 2.532 2.575 2.540 2.670 0.612 2.684 1.983 2.495 0.875
50 2.563 2.611 2.644 2.606 2.865 0.563 2.874 2.033 2.297 0.885

1000 0.0025
1 0.803 0.671 0.798 0.676 0.990 0.361 0.999 0.574 1.009 0.849

40 3.149 2.924 2.957 2.929 3.142 0.665 3.146 2.101 3.130 0.693
100 3.151 3.082 2.770 3.090 3.399 0.558 3.407 2.140 2.299 0.520

AVERAGE 1.357 1.288 1.286 1.291 1.431 0.399 1.436 1.015 1.264 0.587



Table 6. Success rates of the mutation operators generated by the auto-adaptation
method based on success rates

Nv Pedge Ns displacement insertion inversion scramble transpose

50 0.05
1 0.054 0.050 0.053 0.033 0.048
2 0.057 0.086 0.031 0.039 0.058
5 0.023 0.050 0.021 0.023 0.049

100 0.02
1 0.056 0.036 0.035 0.041 0.022
4 0.051 0.102 0.058 0.055 0.076

10 0.068 0.089 0.052 0.067 0.045

500 0.0055
1 0.057 0.019 0.044 0.049 0.010

20 0.097 0.213 0.060 0.073 0.131
50 0.074 0.231 0.048 0.051 0.154

1000 0.0025
1 0.049 0.011 0.041 0.040 0.003

40 0.118 0.275 0.078 0.094 0.186
100 0.080 0.263 0.043 0.055 0.168

AVERAGE 0.065 0.119 0.047 0.052 0.079

4 Conclusion

In this paper two auto-adaptation mechanisms for operator selection are tested
on the firefighter problem. One of the auto-adaptation mechanisms uses raw
scores calculated as the number of times each operator produces an improved
specimen. The second mechanism uses scores normalized by the number of tries
(i.e. the number of times each operator was applied). The first mechanism seems
to work better on larger instances, while the first one produces better results on
smaller instances.

Auto-adaptation based on raw scores seems to favor the CX crossover, while
the auto-adaptation based on success rates gives a bit higher priority to the
OBX and PBX crossovers. In the case of mutation both methods give the highest
scores to the insertion mutation operator. The average score and success rate
is clearly the highest in the case of insertion mutation. The inversion, scramble
and transpose mutation operators obtain very poor results and are rarely used.

The fact that success rates of crossover operators vary over the duration of
the optimization process motivates using auto-adaptation mechanisms because
the performance of any individual operator may deteriorate over certain periods
of time.
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