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Abstract. This paper addresses a problem of finding portfolios that
perform better than investment funds while showing similar behaviour.
The quality of investment portfolio can be measured using various cri-
teria such as the return and some kind of risk measurement. Investors
seek to maximize return while minimizing risk. In order to achieve this
goal various instruments are considered. One of the possibilities is to en-
trust the assets to an investment fund. Investment funds build their own
portfolios of stocks, bonds, commodities, currencies, etc.
In this paper we consider the problem of finding a portfolio which out-
performs a given investment fund with respect to both the return and
the risk and which also behave in a similar way to the given fund. The
rationale behind such an approach is that investment strategies of mu-
tual funds are prepared by experts and are therefore expected to be
reasonably good in terms of both the return and the risk. To achieve
the presented goal we use a multiobjective evolutionary algorithm with
a dedicated ”division mutation” operator and a local search procedure.
Presented method seems capable of building portfolios with desired qual-
ities.

Keywords: investment funds, portfolio optimization, multiobjective evo-
lutionary optimization

1 Introduction

Bio-inspired methods are often applied to various economic and financial prob-
lems [1, 5, 15] such as supporting financial decision making [10, 14, 17] and dis-
covering trading rules for stock market speculations [4, 11, 12]. Optimization of
investment portfolios [2] is an important task with practical implications to
which evolutionary methods are often employed [13, 16]. Usually, there is more
than one criterion to optimize. Typically the return and at least one measure of
investment risk are considered. In this paper we focused on finding portfolios of
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investment instruments that not only maximize the return and minimize the risk
but also behave similarly to a given investment fund. Performing such search is
motivated by the fact, that we would like to know if in the ”neighbourhood”
of an investment fund strategy there exist other strategies that can get better
results.

In this paper we assume that we have a number of categories Cj , j =
1, . . . , N (c) of investment instruments, such as stocks, bonds, currencies, etc.
Each of the considered instruments Ii, i = 1, . . . , N (i) belongs to exactly one
instrument category Cj . Therefore, obviously, N (i) =

∑N(c)

j=1 |Cj |. We denote the
quotations of instrument Ii by qi(t).

The portfolio is represented as a vector w ∈ RN(i)
in which each coordinate

wi is a ”weight” of instrument Ii (the number of units of this instrument bought
when the investment is made). We calculate the quotations p(t) of portfolio w
as:

p(t) =
N(i)∑

i=1

wiqi(t) . (1)

The quotations for the instruments (and therefore for the entire portfolio as
well) are assumed to be available for a time period [tmin, tmax].

There are three criteria which are optimized in this paper: the return mea-
sure, the risk measure and the dissimilarity to a given investment fund. The
return R is assumed to be the ratio between the last and the first quotation,
so Rf = f(tmax)/f(tmin) for the investment fund, RIi = qi(tmax)/qi(tmin) for
instruments and Rw = p(tmax)/p(tmin) for portfolios. As this is essentially a
return calculation for a buy-and-hold strategy, trading costs have similar impact
on the return of all portfolios and are therefore not taken into consideration
in this study. The risk for the investment fund (Vf ), the instruments (VIi) and
portfolios (Vw) is measured using the classical measure of Value at Risk [9] calcu-
lated for the entire period [tmin, tmax]. The dissimilarity Dw,f between portfolio
w quotations p(t) and investment fund quotations f(t) is measured using Mean
Squared Error (MSE) measure calculated for the entire period [tmin, tmax]. We
intend to find portfolios which maximize the return Rw, and minimize both the
risk Vw and dissimilarity Dw,f for a given investment fund f .

2 Proposed method

Finding portfolios which maximize the return Rw, and minimize both the risk
Vw and dissimilarity Dw,f for a given investment fund f requires three-objective
optimization. It is well-known that multiobjective optimization can be performed
effectively using evolutionary methods [6, 18]. One of the reasons for which such
methods are particularly useful in this context is that population of solutions
can readily be used to represent a Pareto set and a Pareto front of a sovled
problem. In this paper we propose an evolutionary algorithm described below.
The algorithm keeps a subpopulation PCj of specimens for each category Cj ,
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j = 1, . . . , N (c) of investment instruments and one global population Pall which,
apart from evolving on its own, is also updated by importing specimens from
other subpopulations. For a given j, specimens in subpopulation PCj have non-
zero weights assigned only to instruments that belong to category Cj (eg. stocks).
All genetic operations and other procedures are implemented to ensure that this
condition is met during entire program execution. Algorithm 1 presents details
of the evolutionary algorithm used for performing portfolio optimization. In the
algorithm Pall(g) and PCj (g) denote global and category-specific subpopulations
at the generation g.
The following quantities parameterize the algorithm:

N (gen) - the number of generations,

N (pop) - initial size of each subpopulation (global and category-specific),

N (cross) - the number of crossover operations per generation,

P (mut) - the percentage of individuals that produce offspring using mutation,

P (weight mut) - the percentage of weights mutated in one specimen.

P (div mut) - the percentage of individuals that produce offspring using the
dedicated ”division mutation” operator,

Algorithm 1 Evolutionary algorithm with subpopulations for optimization of
portfolios.

Pall(1) = InitPopulation(N (pop))
for j = 1 → N (c) do

PCj (1) = InitPopulation(N (pop))
end for
for g = 1 → N (gen) do

for j = 1 → N (c) do
PCj (g) = PCj (g) ∪ Crossover(PCj (g))
PCj (g) = PCj (g) ∪Mutate(PCj (g))
PCj (g) = PCj (g) ∪DivMutate(PCj (g))
PCj (g) = PCj (g) ∪ LocalSearch(PCj (g))

end for
for j = 1 → N (c) do

Pall(g) = Pall(g) ∪ PCj (g)
end for
Pall(g) = Pall(g) ∪ Crossover(PCj (g))
Pall(g) = Pall(g) ∪Mutate(PCj (g))
Pall(g) = Pall(g) ∪DivMutate(PCj (g))
Pall(g) = Pall(g) ∪ LocalSearch(PCj (g))
Pall(g + 1) = Select(Pall(g))
for j = 1 → N (c) do

PCj (g + 1) = Select(PCj (g))
end for

end for
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The algorithm uses the following procedures and operators:

InitPopulation - creates a new population consisting of a given number of
specimens. Each specimen is a vector w ∈ RN(i)

in which each coordinate wi is
drawn with uniform probability from the range [0, w(max)

i ], where:

w
(max)
i =

maxt∈[tmin,tmax] f(t)
mint∈[tmin,tmax] Ii(t)

. (2)

Crossover - a standard single-point crossover operator [7]. 2N (cross) new
specimens are generated by selecting two parents at random from existing pop-
ulation and then splicing the chromosomes at a randomly selected point. These
new specimens are then added to existing population.

Mutate - creates [P (mut)·population size/100] new specimens. Each new spec-
imen is generated by selecting at random from existing population one specimen
in which P (weight mut) percent of weights are mutated. A single weight is mu-
tated by selecting an integer exponent η with uniform probability from range
[−6, 6], a real number increment δ with uniform probability from range [−5, 5]
and then adding η · δ to the weight. The new value is then clipped to the range
[0, w(max)

i ], where w
(max)
i is given by the Equation (2).

DivMutate - a dedicated mutation operator described below.

LocalSearch - a local search procedure described below.

Select - selection procedure based on non-domination sorting and crowding
distance known from the NSGA-II algorithm [3]. This selection scheme involves
performing a series of binary tournaments in which the fitter of two individuals
is selected as a winner. Specimen fitness is not directly calculated, but rather the
selection is based on the ranks of Pareto fronts to which the specimens belong and
the density of population near each of the specimens. In addition to specimens
selected in binary tournaments, a set of specimens that outperform the given
investment fund with respect to both the return and the risk is copied from one
generation to the next. This set may contain at most N (elite) specimens with
the largest crowding distance that are non-dominated by each other (dominated
ones are removed).

2.1 Dedicated ”division mutation” operator

During preliminary experiments we noticed, that if the initial portfolio time
series differs significantly from the series of quotations of the investment fund
the convergence is very slow. We hypothesized, that this is caused by the fact
that specimens are evaluated using three criteria, so even specimens relatively
distant from the target time series may survive. We also suspected, that the
simple mutation operator described above may not be very effective in generating
new specimens that lie far from the original ones. This could be remedied by
increasing the probability of mutations or the range of possible weight change.
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Unfortunately, such approach would cause abrupt changes in the structure of
portfolios, which we would like to avoid. Therefore, we proposed a new genetic
operator which acts as mutation and is specific to the problem we tackle.

”Division mutation” operator creates [P (div mut) · population size/100] new
specimens. Each new specimen is generated by selecting at random from existing
population one specimen and modifying it according to the Algorithm 2.

Algorithm 2 Division mutation for a single specimen w ∈ RN(i)
.

Select at random t0 ∈ [tmin, tmax]
δ = p(t0)/f(t0)
for j = 1 → N (i) do

wi = wi/δ
end for

From the Equation (1) it is obvious that after the application of this operator
the new quotations p′(t) of the portfolio satisfy a condition: ∀t · p′(t) = p(t)/δ,
where p(t) are the quotations before the application of division mutation. There-
fore p′(t0) = p(t0)/δ = p(t0)/(p(t0)/f(t0)) = f(t0), which means, that the ”di-
vision mutation” operator ensures that the time series of portfolio quotations
intersects with the time series of fund quotations at a randomly selected point.
This operator however, scales all the weights by the same factor and thus it
leaves the structure of the portfolio intact as opposed to the regular mutation
which works on individual weights.

2.2 Local search

Local search is a well-known approach to improving the quality of solutions
generated by an evolutionary algorithm [8]. In this paper we introduce a local
search procedure which tries to find a solution that improves two objectives by
combining solutions that are good with respect to one of the objectives.

In the case of the particular problem of finding portfolios of investment in-
struments we try to find portfolios that improve both the return and the risk by
combining portfolios that give higher returns than a given investment fund or
have a lower risk. The local search procedure operates as shown in Algorithm 3.
It selects two random samples each containing N (ls) specimens which are better
than the given investment fund with respect to one of the objectives. Then, lin-
ear combinations of all pairs of specimens from the two samples are generated.
New specimens for which both objectives are better than threshold values θ1

and θ2 are added to the result set. In this paper we set θ1 = Rf and θ2 = Vf ,
i.e., specimens that have both higher return and lower risk that the given fund
are added to the result set.

If any specimens that improve both the return and the risk are found during
local search they are given a chance to produce offspring using division mutation
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Algorithm 3 Local search procedure.
A = ∅ - a set of specimens found by the local search
S1 = a random sample of N (ls) specimens with the objective O1 better than θ1

S2 = a random sample of N (ls) specimens with the objective O2 better than θ2

for i = 1 → N (ls) do
for j = 1 → N (ls) do

wi = weights of specimen S1[i]
wj = weights of specimen S2[j]
for α = 0.01 → 1 step 0.01 do

w′ = αwi + (1− α)wj

O′1 = objective 1 obtained from w′

O′2 = objective 2 obtained from w′

if O′1 is better than θ1 and O′2 is better than θ2 then
A = A ∪ { a new specimen with weights w′}

end if
end for

end for
end for
A = A ∪DivMutate(A)
A = SelectNonDominated(A)
return A

operator. Finally, from the result set A only these specimens are selected that
are not dominated by any specimens in A.

3 Experiments

In the experiments we tested the ability of the presented algorithm to construct
portfolios of stocks and currencies that outperform a given investment fund with
respect to both the return and the risk at the same time. We performed tests for
18 Polish investment funds from which some invest mainly in stocks and other
invest mainly in instruments having a lower risk such as bonds. Details of the
funds are summarized in Table 1. The available investment instruments were 317
stocks from Warsaw Stock Exchange and 6 currencies that have exchange rates
to Polish currency noted on FOREX market: Swiss franc (CHF), Czech koruna
(CZK), Euro (EUR), British pound (GBP), Hungarian forint (HUF) and US
dollar (USD). We assumed that the investment is made for a period of half a
year from tmin = 2010.06.30 to tmax = 2010.12.31. This period equals the interval
between semi-annual reports that investment funds are required to publish from
which we could learn about the structure of portfolio of instruments used by
each of the funds.

In the experiments we ran the algorithm for N (gen) = 50 generations. As
there were two categories of investment instruments (stocks and currencies) the
algorithm kept three subpopulations (one global and two category-specific) which
initially consisted of N (pop) = 200 specimens. The other parameters of the evo-
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Table 1. Details of investment funds considered in the paper

ID Issuer Main investment instrument Return VaR
(as reported on 2010.06.30) on [tmin, tmax] on [tmin, tmax]

96 Millenium stocks (92.7%) 1.193616 0.009697616
97 Millenium stocks (59.6%) 1.126392 0.007921864
107 Commercial Union debt securities (97%) 1.020221 0.0005879808
108 Commercial Union debt securities (89%) 1.021743 0.00259334
109 Commercial Union stocks (94%) 1.231499 0.01066058
121 Commercial Union debt securities (62%) 1.098829 0.003664982
149 Millenium debt securities (63,6%) 1.081201 0.004770102
159 Commercial Union debt securities (63%) 1.075789 0.001771456
261 Commercial Union stocks (51%) 1.13904 0.005648553
1619 Commercial Union investment funds (50%) 1.056212 0.006571422
2378 Commercial Union stocks (96%) 1.248263 0.01144357
2379 Commercial Union stocks (90%) 1.288662 0.006936816
2380 Commercial Union stocks (80%) 1.250754 0.007484911
2381 Commercial Union stocks (92%) 1.279447 0.007234238
3463 Millenium investment funds (81.5%) 0.972389 0.009257582
3466 Millenium investment funds (86.7%) 1.036602 0.01081419
3467 Millenium investment funds (80.8%) 0.8973272 0.01727394
3470 Millenium investment funds (88%) 1.016006 0.01577246

lutionary algorithm were set to N (cross) = 50, P (mut) = 200, P (weight mut) = 50,
P (div mut) = 10, N (elite) = 100. Local search sample size was set to N (ls) = 20.

Table 2 summarizes the experiments. This table presents, for each investment
fund, the number of generation at which the first portfolio with higher return
and lower risk than the given fund was found.

Table 2. Number of generation at which the first portfolio with higher return and
lower risk than the given investment fund was found

ID 9
6

9
7

1
0
7
∗

1
0
8
∗

1
0
9

1
2
1
∗

1
4
9
∗

1
5
9
∗

2
6
1

1
6
1
9

2
3
7
8

2
3
7
9

2
3
8
0

2
3
8
1

3
4
6
3

3
4
6
6

3
4
6
7

3
4
7
0

Generation Popall 1 1 - - 1 - - - 39 2 1 16 5 3 1 1 1 1
Generation Popstocks 2 12 - - 2 - - - - - 3 - - - 1 1 1 1
Generation Popcurrencies - - - - - - - - - - - - - - - - 1 -

∗Higher return portfolios have been found, but not lower risk portfolios.

As can be seen from the results we were able to find portfolios of both stocks
and currencies that outperform investment funds which invest mainly in stocks
or other investment funds. It was not possible to outperform funds that invest
in debt securities. A comments under Table 2 along with a glance at VaR values
in Table 1 explain why. The funds that invest in debt securities have very low
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risk, which is not surprising as debt securities are known to possess exactly that
feature. The algorithm was able to construct portfolios that give higher return,
but at the expense of increasing the risk. It is also worth noticing, that the
algorithm had not have any low-risk instruments at its disposal (only stocks and
currencies were available).

It seems that in some cases the presence of currencies in the investment
portfolio was required to outperform the given investment fund. Only in one
case however a portfolio containing only currencies was enough to ensure enough
return and sufficiently low risk.

In order to visualize the behaviour of the algorithm we include graphs that
present minimum, average and maximum values of the three objective through-
out all 50 generations of evolution for calculations performed for one of the funds
(ID = 96). Due to space limitations it is not possible to present similar graphs
for all investment funds considered in the tests. Top-left graph in Figure 3 shows
values of the return obtained from investment in a given portfolio. Maximum
values in this graph reach higher than 1.5, while the return of the fund is less
than 1.2, but this might have been achieved at the expense of increasing the
risk (which is not shown in this particular graph). In top-right graph in Figure
3 values of Value-at-Risk measure are shown. Again, risk given by individual
specimens is more than two times lower than that of the fund, but it might
have been achieved at the expense of lower return. Bottom-left graph in Figure
3 presents values of Mean Squared Error calculated on the range [tmin, tmax]
(2010.06.30-2010.12.31) between portfolio quotations p(t) and investment fund
quotations f(t). Due to the large changes in the value of the MSE especially at
the beginning of the evolution this graph has a logarithmic scale.

As it can be seen from the graphs in the case of this particular fund the
algorithm gradually improves the return for about 35 generations and the risk for
about 25 generations. A significant pressure is visible with respect to similarity
to the investment fund behaviour.

4 Conclusion

In this paper we address a problem of finding portfolios of investment instru-
ments that give higher return and achieve lower risk than a given investment
fund. An additional criterion that was expected to be optimized was that the con-
structed investment strategy should behave similarly to the investment fund. We
proposed an multiobjective evolutionary algorithm that optimized the solutions
taking into consideration three objectives: investment return, Value-at-Risk as a
risk measure and Mean Squared Error as a measure of dissimilarity between the
time series of portfolio quotations and the time series of quotations of the given
investment fund. In the paper we introduce a new mutation operator aimed at
increasing convergence to the baseline time series and a local search procedure
which combines solutions which are superior with respect to at least one ob-
jective (risk or return) in order to find solutions superior with respect to two
criteria. During the tests we found out that the new mutation operator speeds
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Fig. 1. Minimum, average and maximum values of return (top left), risk (top right) and
the logarithm of MSE measuring dissimilarity between fund and portfolio quotations
(bottom left) in the population in each of the generations

up convergence to the given investment fund time series by generating specimens
that intersect with the fund quotations at at least one instant in time.

The experiments were performed using stocks and currencies as possible in-
vestment instruments. In the experiments portfolios that outperform investment
funds were found in cases when the fund invests mainly in stocks or other invest-
ment funds. In the case when the fund invests mainly in debt securities finding
portfolios outperforming the fund in minimizing the risk was not possible. This
is most probably due to inherently higher risk of stock and currency investments
compared to debt securities which are known to have lower investment risk.

In general, however, the proposed algorithm seems to be capable of finding
portfolios with required properties, i.e. similar to a given investment fund but
with higher return and lower risk, provided that proper investment instruments
are available for portfolio construction.
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